Audio Innovations

Car Stereos, Auto Customizing, Mobile Electronics

1105 Jim's Lane, Conway, AR 72032 501-358-6545
  • Home
  • Services
    • Car Audio
    • Driver Safety Systems
    • Marine Audio
    • Motorcycle Audio
    • Radar and Laser Detector Systems
    • Remote Starters
  • About Us
  • Location
  • Customer Reviews
  • Contact Us
  • Facebook
  • Instagram

Product Spotlight: Mosconi Pro 4|30

Mosconi Pro 4|30

There are hundreds, if not thousands, of different options available when picking an amplifier for your car audio system. Some amplifiers focus on offering a diminutive footprint to simplify installation but sacrifice thermal stability. Others concentrate on producing prodigious amounts of power at the expense of audio signal purity. Mosconi’s Pro series amplifiers were designed to be reliable and sound great. Let’s look at the Pro 4|30 four-channel amp in this Product Spotlight.

Mosconi Pro 4|30 Specifications

As mentioned, the Mosconi Pro 4|30 is a four-channel amp that’s rated to produce 170 watts of power per channel when driving four-ohm loads. Output power increases to 225 watts per channel with two-ohm loads. Each pair of stereo channels can be bridged to drive a single four-ohm load and provide it with 450 watts of power. Mosconi states that the amp has a signal-to-noise ratio of -83 dBA, referencing one watt of power.

The amplifier chassis measures a robust 500 by 205 by 55 millimeters, or 19.7 inches long, 8.07 inches wide and 2.18 inches tall. The chassis design is unique in that the front and rear halves of the amp are wrapped in vertical aluminum plates. The rear third of the amp is mostly a finned heatsink with two cooling fans mounted on top. The center and bottom thirds of the amp conceal the circuit board.

Mosconi Pro 4|30
The Pro 4|30 has a unique chassis design.

Amplifier Connections and Features

All the power, signal, and speaker connections are made along the front edge of the amp using integrated terminal blocks. The hex-head set screws for the connections are accessible through openings in the top panel. An easily replaceable 150-amp mini-ANL fuse accessible from the top protects the amp from wiring mishaps.

The four sets of speaker connections are just to the left of the center of the chassis. Once again, terminal blocks with set screws accessible from the top of the amp ensure a reliable connection. Installers should pay close attention to the polarity labels, as the adjacent channels are inverted when viewed left to right.

Finally, on the left side of the amp, we find the input for the optional RTC remote level control and two sets of RCA input jacks.

Mosconi Pro 4|30
All connections are made along the front edge of the amp to keep the installation tidy.

Audio Processing Options

While the Pro 4|30 may look simple at first glance, it’s got all the features your installer will need to extract excellent performance from your speakers. The settings for Input A and Input B are once again accessible from the top panel and located at the amp’s far left end. The amp can accept audio signals from 350 millivolts up to 12 volts. The amp has a button that enables the high-level input range. When the high-level input is activated, the amp monitors the input for the presence of the BTL offset voltage and activates the amp automatically when detected. A Direct DSP (DDSP) button bypasses much of the audio processing for those instances when using a digital signal processor and locks the input sensitivity to 5.3 volts.

Concerning crossovers, Input A has a -12 dB/Octave high-pass filter that can be set between 43 and 500 hertz, or 430 Hz to 4 kHz when the x10 multiplier button is depressed. Input B has a high-pass crossover that’s adjustable from 18 to 220Hz and a low-pass crossover adjustable from 43 to 500 Hz. It would be nice if the Input B low-pass crossover had an x10 button. That said, most installations with this amp will include a digital signal processor.

Mosconi Pro 4|30
All the audio processing controls are located on the top panel just above the RCA input jacks.

High-Bias Operation

If you’d read our articles on amplifier distortion, you’ll know that crossover distortion in Class-AB designs can, when not designed or calibrated properly at the factory, result in sound quality issues, especially at low volume levels. Mosconi’s taken a novel approach to maximizing sound quality by configuring the amp to operate in what they call AAB mode. The output devices are biased to operate in full Class-A mode up to 30 watts of power. Class-A operation eliminates the crossover distortion issue. However, this operation mode means the amp will turn the output devices on halfway when no signal is played. This increases current consumption, so the amp will get quite warm. When running this beauty, you’ll want to ensure your vehicle has a robust electrical system.

Once the output level exceeds 30 watts per channel, the amp reverts to conventional, though still sonically excellent, Class-AB mode. In short, you should experience impressive clarity at low volume levels and still be able to crank things when the mood requires. Very cool!

Mosconi Pro 4|30
The Pro 4|30 circuit board uses high-quality surface-mount devices, and the output MOSFETs are clamped to an extruded aluminum heatsink.

High-Quality Car Audio Amplification

Though a handful of sound-quality-focused amplifiers are still on the market, they are becoming rarer. You can find smaller, more efficient amplifiers to power your car audio system. However, we suggest formally auditioning the unique Mosconi Pro 4|30. It would be well worth the time investment if you plan on installing a truly high-end audio system in your vehicle. You can find an authorized Mosconi dealer near you using the Find a Dealer tool on the Mosconi America website.

Be sure to follow Mosconi on Facebook and YouTube to learn more about their amazing car audio products.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio, PRODUCTS Tagged With: Mosconi

A Look at the Importance of Tweeter Installation Hardware

Tweeter Installation

High-quality speakers and proper installation are crucial when upgrading your car’s audio system. The ease with which your installer can reliably integrate tweeters into your vehicle will determine a portion of the labor cost. Will the technician need to fabricate a mounting bracket? Will they need to create a little pod? Is there even enough hardware provided to ensure a reliable and safe installation? Let’s look at some tweeter installation hardware solutions.

Why Are Tweeters Important for Great Sound Quality?

Before discussing tweeter installation, we should review the importance of having dedicated tweeters in a car audio system. By definition, tweeters are relatively small speakers designed to play the highest audible frequencies. They vary from 0.5 to over 1.25 inches in size. The larger tweeters can typically play lower frequencies, making them ideal for two-way front speaker systems. However, a large diaphragm might have some resonance at extremely high frequencies.

Tweeters are made from a variety of materials. Textile domes like silk, metal domes like aluminum, titanium and beryllium and plastic materials like polyetherimide are among the most popular. While the metal versus textile performance discussions will go on forever, what’s more important is that the tweeter diaphragm doesn’t have resonance issues. Most companies add a damping material to the diaphragm to prevent this. The damping applies to both textile and metal designs.

Most tweeters in the car audio market use a dome-shaped diaphragm. However, some use a ring-radiator design, like the tweeters in the Rockford Fosgate T4652-S set. The concept of the ring tweeter is to eliminate the chance of resonance in the center of the dome. While it’s unwise to make blanket statements about one design over others, we were very impressed with the clarity of the T4 ring radiator tweeter.

Tweeter Installation
The Rockford Fosgate T4652-S tweeter uses a ring-radiator design, which eliminates resonance in the dome’s center.

Flush-Mount Tweeter Installation Options

There are four common options for tweeter installation. First, we have flush-mounting. In this type of installation, the tweeter and a grill are mounted in a panel, and the result is basically flush. This means the tweeter may only protrude a few millimeters or 0.25 inch. This type of installation requires that the panel be modified to accept the tweeter, which means a hole between 1 and 1.5 inches must be created.

The most basic reliable tweeter mounting method uses a U-shaped spring-steel bracket that bolts to the back of the tweeter assembly. The bracket must be spring steel to retain tension and hold the tweeter securely.

Tweeter Installation
The Hertz ML 280.3 Legend uses a high-quality spring-steel bracket to secure the 1.38-inch high-frequency driver to the installation panel.
Tweeter Installation
A Hertz ML 280.3 is installed in an A-pillar. Image: Dan Wilson, Columbus Car Audio.

Some companies have created more complex installation solutions for flush-mount applications. For example, KICKER’s QS-Series speakers include a nut that threads onto the back of the tweeter to keep it pressed tightly against the mounting surface. The legs of the nut can be trimmed to work with mounting surfaces of different thicknesses.

Tweeter Installation
KICKER includes a surface-mount trim ring and adjustable depth locking nut to secure their tweeters.
Tweeter Installation
The KICKER Chevrolet Cruze features QS-Series components mounted in custom pods in the doors.

Rockford Fosgate’s Dual Discrete Clamp mounting solution is one of the most elaborate mounting options we’ve seen. The DDC comprises two cast aluminum brackets sandwiched on either side of a mounting surface to hold the tweeter in place. Once the two clamps are secure, the tweeter locks into place, and a trim piece finishes the installation.

Tweeter Installation
The Dual Discrete Clamp hardware, included with many Rockford Fosgate tweeters, ensures a rock-solid installation.
Tweeter Installation
This Mitsubishi Eclipse features three Punch Series 6.5-inch component sets in the front to support 16 subwoofers.

Surface Mounting Options

The second type of installation is to mount the tweeters on the surface of a dash or door panel. This is less invasive as there doesn’t need to be a huge hole cut. That said, holes for wiring or hardware might be required depending on the location. Many tweeters include surface-mounting solutions that position the tweeter parallel to the mounting or at an angle. Angled mounting solutions are helpful when mounting a tweeter off-axis to the listening position. Ideally, a tweeter should be within 15 to 20 degrees of being on-axis with the listener. Alternatively, the tweeter can point at the windshield, dispersing high-frequency information into the listening area.

Tweeter Installation
The 1-inch Sony Mobile ES tweeter in the XS-162ES and XS-163ES sets includes flat and angled surface-mounting hardware.

Tweeter Pods

Another option for installing tweeters is to use pods included with the system. These pods are typically bullet-shaped and mount through a single hole. The design should have a way to conceal the wiring for a neat appearance. You will want to ensure that the pods can be directed at the listening position for maximum performance.

Tweeter Installation
KICKER’s KST200 and KST250 tweeters and several component sets include pods to simplify tweeter installation.

Original Equipment Locations

Most modern vehicles have tweeters integrated into the factory audio system. These are often behind small grilles in the A-pillars, the dash, the doors near the release handle, or the sail panels in the front corner. Often, the factory tweeters are quite small in diameter and overall size. As such, it can be tricky to replace them with aftermarket tweeters. Some companies offer tweeter designs specifically engineered to work in original equipment locations, eschewing grilles and other hardware.

The key to a successful installation in these locations is reliability. We’ll be very clear in stating that mounting with hot glue or butyl rubber is unsatisfactory. These materials can quickly melt when the vehicle interior gets hot in the summer, causing the tweeters to fall out of place. If there aren’t options for mechanical fastening solutions, an epoxy adhesive like 3M Scotch-Weld DP8005 designed to work with plastics is an acceptable alternative.

Tweeter Installation
A Rockford Fosgate tweeter mounted in the original sail-panel locations of this BMW X1 XDrive28i CUV.
Tweeter Installation
Musicar Northwest designed and 3D-printed custom mounting brackets for a set of Morel tweeters and midrange drivers for a Lucid Air audio system upgrade.

Custom Installations

Of course, a custom installation solution for your tweeters is always an option. You may want them to blend into the A-pillar, dash or door. You may want a technician to create a custom pod that puts the tweeters in a specific location or points them in a particular direction. You may wish for the installation to look unique. So long as the guidelines about tweeter directivity are heeded, you can have the technician construct almost anything.

Tweeter Installation
An Audison Thesis-Series tweeter mounted in a low-profile custom A-pillar mount. Image: Dan Wilson
Tweeter Installation
A Rockford Fosgate T-4652-S tweeter installed in the door of a Chevrolet Corvette.
Tweeter Installation
Custom pods with an OE look for a set of Morel tweeters in a Ford Raptor by Musicar Northwest.
Tweeter Installation
A set of custom pods for Sony Mobile ES tweeters by Soundbytez Car Audio.

The Importance of Proper Tweeter Installation

While a tweeter doesn’t seem like a large item, in the unfortunate event of an accident, the last thing you want is to get hit by a tweeter that’s come out of place. Yes, this is a bit extreme. However, true professionals put significant effort into ensuring that their upgrades to our cars and trucks are safe and reliable. Do you want a tweeter to fall into the door or an A-pillar because it was held in place with hot glue? Certainly not. When shopping for car audio speaker upgrades, drop by a local specialty mobile electronics retailer and ask them which component speaker systems they offer. Be sure to inquire about how they integrate the tweeters into client vehicles.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Product Spotlight: Focal PS 165 SF

Focal PS 165 SF

When it comes to premium car audio speaker upgrades, most enthusiasts know that Focal offers more solutions than any other. With offerings ranging from OE replacement to benchmark quality, there’s a speaker at a price point for every budget. In this spotlight, we will look at the PS 165 SF two-way, 6.5-inch Slatefiber kit. Let’s check it out!

What is the Focal PS 165 SF kit?

The PS 165 SF speaker kit includes a pair of 6.5-inch woofers, two 20mm tweeters and a set of passive crossover networks.

The woofers are based around a cast aluminum basket. The basket has five sets of twin spokes connecting the mounting flange to the base in what they call the Rotor Effect Basket. Four large (roughly 1-inch) slots in the mounting lip secure the basket to the vehicle. The basket has a bluish-slate color that matches the woofer cone color. Electrical connections are handled by a set of quick-connect terminals housed in a custom-tooled plastic block. The tinsel leads are neither rubber-coated nor sewn to the spider, but the plastic block has dedicated routing to ensure the leads do not slap the cone or spider at high excursion levels.

Focal PS 165 SF
The wire connection terminal block includes routing for the tinsel leads to ensure they operate silently at high output levels.

Slatefiber Woofer Features

The woofer cone is made from non-woven recycled carbon fibers and uses the marketing name Slatefiber for its blueish slate stone appearance. The random design of the cone helps with damping, resulting in smoother high-frequency response. As with many Focal speakers, there’s no dust cap, which helps reduce the mass of the moving assembly to improve upper midrange performance. A large rubber surround provides cone damping and a reliable, flexible seal at the top of the cone. At the base of the cone is a 25mm voice coil former that gives the set an 80-watt continuous power rating. A single ceramic magnet powers the woofer.

A quick look at the woofers’ specifications shows a resonant frequency of 66.8 Hertz, a Qts of 0.592 and an effective surface area of 132 square centimeters. Focal has chosen a slightly lower-than-normal impedance for the woofer, with the DC resistance being 2.8 ohms. This will increase the maximum power available from whatever amplifier you choose to drive the kit.

Focal PS 165 SF
A butyl rubber surround ensures long-term reliability for the Slatefiber woofers.

Focal Aluminum Magnesium Tweeter

The kit includes a pair of Focal’s proprietary aluminum and magnesium inverted hard-dome tweeters. The tweeters have an effective radiating diameter of 20mm, a DC resistance of 4 ohms and a resonant frequency of 2.6 kHz. Their efficiency is rated at 93 dB at 2.83V at 1 Meter.

While tweeter performance is crucial to hearing all your music, installation flexibility is equally important. The Al/Mg tweeters have a flush mounting cup with a grille and integrated phase disc. The raw tweeter can also be installed without the cup in OE applications. The kit also includes surface mount pods for the tweeters when used with their cups. This will allow your installer to mount the tweeters to your dash and aim them toward the listening position.

Focal PS 165 SF
The Aluminum/Magnesium tweeters can be mounted without their cups in OE locations.

Passive Crossover Networks

A crucial key to the performance of a component speaker set is to use it with either a properly configured and calibrated digital signal processor or with the right passive crossovers. Focal includes passive crossover networks with the PS 165 SF kit. Uniquely, the woofers’ low-pass filters and the tweeters’ high-pass filters are in different housings. This allows your installer to split the wiring and mounting locations if you have a dash or A-pillar tweeter location and a door location for the woofer. The tweeter crossovers include a three-position switch on the circuit board that allows your installer to reduce tweeter output by 3 or 6 dB to compensate for different mounting distances and listening preferences.

Focal PS 165 SF
The passive crossover networks for the woofers and tweeters are in separate enclosures to make installation easy.

Focal Slatefiber Speaker Design

Looking at all the features of the Focal PS 165 SF Slatefiber set, its efficiency is one of the many features that stand out. As such, these speakers can be used effectively with either a factory-installed or aftermarket radio using “deck power.” If you want more output, a small to medium-sized stand-alone amplifier will provide more output and likely improve clarity—the flexible crossover design complements the OE upgrade suitability of the kit.

If you are in the market for a set of speakers to enhance your mobile audio system, visit a local authorized Focal dealer and ask about the PS 165 SF Slatefiber set. You can find a dealer near you using the store locator tool on the Focal website. For more information on Focal products, be sure to follow them on Facebook, Instagram and on YouTube.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio, PRODUCTS Tagged With: Focal

A Car Audio Speaker Power Handling Demonstration

Speaker Power

We’ve talked about how speaker power handling is tested and the importance of delivering accurate test data. In the context of car audio speakers, we’ve explained that the physical size of the voice coil is a crucial element in determining how much power a speaker can handle. In this article, we’ve put together a simple, practical demonstration to show the thermal limits of a speaker.

What Defines Speaker Power Handling

Before the demonstration, we should discuss the definition of “power handling” in the context of speakers and subwoofers. Power handling describes the amount of power from an amplifier that a speaker can handle without being permanently altered negatively. This negative effect could be thermal damage to the voice coil former, the speaker’s suspension, or physical damage from excessive excursion. For example, too much low-frequency information fed into a small midrange driver might cause the voice coil former to hit the T-yoke and cause permanent deformation.

Unlike test tones, music is very dynamic. In this context, dynamic refers to a varying average level of energy. For example, a quiet passage in a song with only a female artist singing might require only a watt of power from an amplifier. When the bass guitar and drums start playing, it might take 10 or 20 watts of power to reproduce those lower frequencies. A stick hitting a floor tom drum’s skin takes less energy than strumming the lowest note on a five-string bass. The guitar sound could last several seconds, whereas the drum strike might only be a half-second. Power over time is what builds up heat in a speaker voice coil.

Cooling Capacity Analogy

A good analogy here is a car engine. For example, a Honda Civic might have a single radiator 14 inches tall and 14 inches wide with a ½-inch thick core. Conversely, a Dodge Challenger Hellcat might have a radiator that’s 25 inches wide, 18 inches tall and 1.625 inches thick. The Honda has 98 cubic inches of cooling capacity, whereas the Dodge has about 772 inches.

Speaker Power
The size of a car or truck radiator depends on how much heat an engine wastes and how hard it’s likely to work. Images: RockAuto.com

We know that engines are about 20-40% efficient. So, the Honda Civic, making 150 horsepower, will waste about 50 horsepower as heat under maximum load. That’s 37.3 kilowatts of heat energy. The Big Dodge can produce 700 horsepower, and assuming a similar 33% efficiency (which is likely generous), it will produce 174 kilowatts of heat.

The purpose of a radiator is to transfer the unwanted heat produced by the engine to air. If we divide the heat produced by the engine by the cubic inches of radiator area, we get 380 watts/square inch for the Honda and 225 watts/square inch for the Dodge. Given the chance that the Challenger will likely be driven more aggressively, some extra cooling capacity is cheap insurance against overheating.

Speaker Efficiency

Unfortunately, moving coil loudspeakers are notoriously inefficient. A 6.5-inch woofer might convert 0.02% of the energy from an amplifier into sound. A mid-level 12-inch subwoofer might only convert 0.25%. So, when you feed 20 watts into the midrange driver, you get the equivalent of 4 milliwatts of sound energy in the air. The rest of that power from the amplifier is wasted as heat in the voice coil and, subsequently, the parts surrounding it.

If you stop and look at different speaker designs with increasing power handling capabilities, you’ll notice that the voice coil size increases. A larger voice coil winding has more surface area. As such, the assembly can absorb more heat before failing.

For example, the Rockford Fosgate P1650 6.5-inch Punch Series speaker is rated to handle 55 watts of power. It has a voice coil diameter of 1.0 inch. The woofers in the Power Series T1650-S component set are rated for 80 watts of power handling and use a 1.2-inch diameter voice coil. The Power T3652-S set is rated for 125 watts, and the woofers have 1.5-inch diameter voice coils. So far, it all seems to make sense. An increase in diameter from 1 to 1.2 inches for a given winding height means 20% more surface area. Going from 1.2 to 1.5 inches in diameter is 25% more area. Combine this with a voice coil winding that’s likely longer, and you have significantly more heat management capacity.

Subwoofer Voice Coils

Speaker voice coils usually have a single winding of copper around the former. Subwoofers, on the other hand, can have multiple layers. Many higher-power subwoofers have four-layer voice coils, so they might be over 3 millimeters instead of a millimeter thick. This increase in size, specifically mass, further increases power handling.

The choice of voice coil former material also affects power handling. For example, aluminum has a thermal conductivity of 210 W/m-K. This means aluminum can transfer 210 watts of heat per meter of material per degree Kelvin. Copper is even better at over 400 W/m-K. On the other hand, air is a terrible conductor of heat energy at about 0.0235 W/m-K. Aramid fibers like Kevlar are also bad, at 0.04 W/m-K. If a speaker designer wants to extract heat from the voice coil winding, they might use an aluminum former. They might use an aramid glass-fiber former if they want a material that won’t heat up. Balancing physical strength, mass and thermal conductivity are all crucial in designing a reliable, high-performance speaker or subwoofer.

Speaker Power
The massive Rockford Fosgate Power Series T3S1-19 19-inch Superwoofer features a gargantuan 5-inch flat-wound voice coil that can handle 3,000 watts of power.
Speaker Power
The SOLO X 15 from KICKER features a multi-layer 3-inch voice coil that can handle 2,000 watts of power.

Let’s Compare Voice Coil Power Handling

We’ve sourced three different voice coils for this little experiment. All have relatively short windings, measuring just under 10, 18 and 20 millimeters in height. The coils have outer diameters of 26.4, 52.7 and 76.9 millimeters. The two smallest voice coils are wrapped around aluminum formers, while the larger uses two aluminum collars connected by a glass fiber backing. One collar is behind the winding, and the other is on top to connect the cone and spider. All three have two-layer windings.

I carefully measured each coil’s impedance. The small coil is wound to a DC resistance of 6.37 ohms. The medium coil has a DC resistance of 7.07 ohms, and the smallest is 3.53 ohms. I created a spreadsheet to calculate how much voltage I should apply to each coil so that it dissipates a specific amount of power. I will start with thermal measurements with 5 watts of power, then increase to 10 watts and see how hot things get.

Speaker Voice Coil Thermal Test at 5 Watts of Power

Starting with the large voice coil, the chart below shows that the temperature rose quickly from room temperature to 125 degrees after 1 minute before settling at about 137 degrees. While that’s warm, there was no concern of damaging the voice coil winding.

The medium-sized voice coil got warmer faster. It reached 132 degrees in a minute, then tapered off to 147 degrees after three minutes.

The smallest voice coil got quite hot quite quickly. It was over 210 degrees in a minute and 288 degrees in three minutes. This isn’t enough to damage it, but that’s a reasonable amount of heat.

Speaker Power
Voice coil temperature versus time at 5 watts of power.

Speaker Voice Coil Thermal Test at 10 Watts of Power

Now, let’s repeat the test using only 10 watts of power. The large coil warmed up a bit faster, tapering off around 180 degrees. The medium-sized coil followed a similar pattern, tapering off at just over 190 degrees. The tiny voice coil temperature skyrocketed almost immediately to 300 degrees, then held around 362. This temperature is the absolute upper limit of what a voice coil can handle. Prolonged use at this level would result in damage.

Speaker Power
Voice coil temperature versus time at 10 watts of power.

Undoubtedly, you’ve seen the different power ratings for Continuous and Maximum or Music power on a speaker. Constant, steady-state tones similar to what we used for this test are very hard on speakers from a thermal perspective. If this were music with 10 dB of dynamic range, you could understand how it could handle high-power transients while cooling off during quiet moments.

Speaker Power
A thermal image of the large voice coil when hot.
Speaker Power
A thermal image of the medium-sized voice coil when hot.
Speaker Power
A thermal image of the small voice coil when hot.

Another Reason Voice Coil Temperature Matters

Before we started the testing, we measured the impedance of each voice coil. The image below shows the impedance and phase plot of the small coil.

Speaker Power
The small voice coil’s impedance (orange) and phase (blue) at room temperature.

There are a few things to learn from this measurement. First, the voice coil winding doesn’t have much inductance. The impedance only starts to increase above 1 kHz. Second, the nominal impedance is at about 3.5 ohms at lower frequencies.

After the 10-watt test, I repeated the impedance measurement. The results are below.

Speaker Power
Impedance (orange) and phase (blue) of the small voice coil, starting at 350 degrees.

The impedance starts at 4.2 ohms and drops to 3.8 as the voice coil cools. With very little thermal mass, the temperature drops quickly during the measurement. While the difference between 4.2 and 3.5 doesn’t seem significant, it’s an increase of 20%.

Does this impedance increase matter? Well, amplifiers output voltage, not power. The amount of power they produce depends on the impedance of the load. If an amplifier produced 5 volts RMS, the speaker would get 7.14 watts of power when cold. Once hot, the current would decrease, and the speaker would only get 5.95 watts of power. That’s not huge, but it’s a difference of 0.79 dB SPL. Suppose your installer has agonized over dialing in a digital signal processor to deliver perfectly smooth sound. In that case, a speaker with a voice coil that heats up quickly will have less efficiency once warm, altering the balance of your audio system.

Heat Management in Car Audio Speakers Is Crucial

This experiment doesn’t consider the pole piece or top plate’s proximity to a speaker to help extract heat. It also doesn’t include any benefits from the voice coil and cone moving to create airflow. However, those features don’t significantly affect the heating or cooling rate between the voice coil sizes shown here.

If you’re looking for speakers or subwoofers that can handle the most power possible, larger voice coils can handle more heat. However, they do come with some drawbacks. We’ll look at those in another article soon. In the meantime, drop by a local specialty mobile enhancement retailer to audition speakers that will sound amazing in your car, boat, or motorcycle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

An Affordable Subwoofer Upgrade Should Use a Ported Enclosure

Affordable Subwoofer

As we’ve mentioned many times, adding a subwoofer is one of the best upgrades you can make to a car audio system. We know that having a shop construct a custom enclosure isn’t always in the budget. Likewise, while impressive, high-end subwoofers aren’t in everyone’s price range. With all this said, there is one item that you should spend a few dollars extra on: a ported enclosure. Let’s look at why a ported enclosure is crucial to creating a subwoofer system that will deliver the performance you likely want without breaking the bank.

Your Factory Stereo Likely Doesn’t Produce Bass Frequencies Well

Before we get into why you should choose a ported enclosure for an affordable subwoofer upgrade, we should discuss why a subwoofer is important to the performance of a car audio system. Imagine a basic stereo system with a radio and four speakers. The radio might be capable of delivering 20 watts of power to each of those speakers. If you want to play music with a lot of bass at higher volumes, the radio will quickly run out of power. When this happens, the signal from the amplifier chip in the radio will be distorted, and your music will sound garbled.

The second issue, which might be more important, is that the four speakers in your car likely aren’t designed to reproduce bass frequencies efficiently. Typically, factory-installed speakers have relatively light cone assemblies so that they are efficient. The speakers are usually most efficient from 80 or 100 hertz and up. Part of keeping the mass of the cone assembly down is using a lightweight, short voice coil. As such, cone excursion is often limited to a few millimeters in each direction. If a speaker can’t move much air, producing bass at higher volume levels is nearly impossible.

Why a Subwoofer Upgrade Is Important

When a subwoofer is added to a stereo system, the small speakers don’t need to try to produce bass frequencies. This means the radio doesn’t have to deliver as much power to the speakers, and the speakers don’t have to work as hard. The result is that the system will sound better and play louder. If the subwoofer system is designed correctly, you’ll get much more bass output and extension. The little amp in the radio and the factory-installed speakers aren’t stressed, so they’ll be much clearer.

Speaking of power, it’s also important to remember that an entry-level subwoofer’s power handling and excursion capabilities will be limited. You want to choose the largest driver you can and use it in a properly designed enclosure to get the maximum performance. The latter is the focus of this article.

Affordable Subwoofer
The Sony XS-W104GS is a 10-inch subwoofer rated for 300 watts of power.
Affordable Subwoofer
Rockford Fosgate’s Prime Series R2D2-10 has a 250-watt power handling rating.
Affordable Subwoofer
The 12-inch Uno Series subwoofer from Hertz can handle 250 watts.
Affordable Subwoofer
KICKER’s C10 subwoofer works best with a 150-watt amplifier.

What Is a Subwoofer Enclosure?

Now, let’s talk about subwoofer enclosures. Why does a subwoofer need an enclosure at all? The primary purpose of a subwoofer enclosure is to prevent the sound coming off the back of the subwoofer cone from mixing with the sound coming off the front and canceling. If you hold a subwoofer in your hand and play music, it won’t produce any bass. If you cut a hole in a wall and mount the subwoofer into it, you’ll hear lots of bass on either side of the wall. This is similar to what happens when a subwoofer is mounted on the rear parcel shelf of a sedan. The sound coming from the back of the subwoofer gets trapped in the trunk. The sound from the front fills the cabin.

The second purpose of a subwoofer enclosure is to act as a high-pass filter. Yes, this seems contradictory to adding a subwoofer at all. Subwoofers need a high-pass filter so they aren’t damaged at extremely low frequencies. If you send an 80-hertz test tone to a subwoofer, it might move back and forth a millimeter. If we play a 40-hertz tone, the subwoofer cone would likely move 3 millimeters. If we try to reproduce a 20-hertz tone, the cone will move over 5.5 millimeters.

Affordable Subwoofer
A graph of subwoofer cone excursion versus frequency at 23 watts.

We scaled the graph above to display 1 millimeter of excursion at 80 hertz. That level of output requires only 23 watts of power. The enclosure used in the simulation has a volume of 20 cubic feet, rendering it useless in controlling subwoofer cone motion.

Now, 23 watts of power into a subwoofer is likely louder than you think. With that said, many likely want the bass to be louder. So, what happens if we send 100 watts to the subwoofer?

√

Affordable Subwoofer
A graph of subwoofer cone excursion versus frequency at 100 watts.

Now we have 11.4 millimeters of excursion at 20 hertz, 5.5 millimeters at 40 hertz and 2 millimeters at 80 hertz. The subwoofer has an Xmax specification of 15 millimeters, so we’re safe, right? What if we increase the signal to the 250-watt limit of the subwoofer?

Affordable Subwoofer
A graph of subwoofer cone excursion versus frequency at 100 watts.

You can see by the shaded area of the red trace that there is an issue below 24.4 hertz. The subwoofer will exceed its Xmax specification of 15 millimeters if fed with 250 watts of power at any frequency at or below 24.4 hertz.

If we put the subwoofer into an enclosure, then power handling increases. Here is the excursion of the subwoofer, in orange, with it installed in a 1.0-cubic-foot enclosure.

Affordable Subwoofer
A graph of subwoofer cone excursion versus frequency at 100 watts: red, infinite baffle; orange, 1.0-cubic-foot sealed.

This is why subwoofers need an enclosure. Now, the subwoofer is fine, in terms of excursion, down to 12.5 hertz. Most amplifiers will have started to decrease their output by this frequency, so we’re protected from overdriving the subwoofer.

Subwoofer System Efficiency

As you’d expect, there are benefits and drawbacks to each type of enclosure. The graph below shows the predicted free-field output of the infinite baffle simulation and our 1-cubic-foot enclosure.

Affordable Subwoofer
Predicted output: red, infinite baffle; orange: 1.0 ft3 sealed.

It should come as no surprise that the larger enclosure predicts more output at lower frequencies. However, the red trace doesn’t consider that the subwoofer will exceed its excursion limits below 24 hertz. In reality, the subwoofer would perform similarly in both enclosures in terms of output but starts to distort earlier in the infinite baffle design.

Vented Enclosures

Now, let’s discuss why a vented enclosure is best when designing an affordable subwoofer system. First and foremost, the subwoofer might be limited in how much power it can handle. An affordable subwoofer might only deal with 250 to 300 watts of power before the voice coil might be damaged. Further, the subwoofer might only have 12 to 14 millimeters of excursion capability, rather than 18 or 20 from a high-end offering. This also limits how loudly it can play.

What if an enclosure design increased the efficiency of the subwoofer system and decreased cone excursion? No, this isn’t magic. This perfectly describes a vented subwoofer enclosure, known technically as a bass reflex enclosure. You can learn about how a bass reflex enclosure works in this article.

Let’s look at the predicted output of our 10-inch, 250-watt subwoofer in a vented enclosure (yellow) compared with a sealed enclosure of the same volume (orange).

Affordable Subwoofer
Predicted output: yellow, bass reflex; orange, 1.0 ft3 sealed.

The bass reflex design is louder with the same power at all frequencies above 16 hertz. Specifically, it’s 4.8 dB louder at 30 hertz and 5 dB louder at 40 hertz. That’s like getting the same amount of output but with only 79 watts of power at 40 hertz. If your subwoofer amp is 50% efficient at this power level (which would be typical), then it only needs to draw about 6 amps of current instead of 20. That’s much easier on the vehicle’s electrical system. The reduction in current means the amp will run cooler. It also means the subwoofer voice coil won’t heat up, which reduces power compression.

Back to Cone Excursion

Is there a drawback to a bass reflex enclosure versus a sealed (acoustic suspension) enclosure design regarding power handling? At extremely low frequencies, yes. The cabinet doesn’t control subwoofer cone motion well below the tuning frequency of a bass reflex enclosure. Let’s look at the cone excursion graph of our bass reflex versus sealed enclosure.

Affordable Subwoofer
Predicted cone excursion: yellow, bass reflex; orange, 1.0 ft3 sealed.

Below 18 hertz, the bass reflex enclosure (in yellow) will have power handling issues. Depending on the music you listen to, this might be cause for concern. If you want to play the cannon blasts from the “1812 Overture” loud, the subwoofer will be mad. It will be mad if you listen to EDM or similar music with lots of infrasonic information. The solution is to set an infrasonic filter at or near 20 hertz.

Subwoofer Distortion Benefits

Aside from their dramatic increase in efficiency, there’s a second benefit to a bass reflex enclosure. As demonstrated in our series of articles about subwoofer distortion, distortion increases with cone excursion. If we look at the last graph, we can see a massive dip in excursion at the bass reflex enclosure tuning frequency. Around this frequency, most of the sound from the enclosure comes from the vent. At 25 hertz, the bass reflex enclosure subwoofer moves about 3 mm in each direction. By contrast, it’s moving 13 millimeters in the sealed enclosure. The bass reflex enclosure will produce significantly less distortion at lower frequencies if the vent is designed correctly. As such, it will sound clearer and more accurate.

Sealed Versus Ported Inexpensive Subwoofer Enclosure

If you want to purchase an affordable subwoofer system for your car or truck, you will need a subwoofer, an amplifier, wiring and an enclosure. The least expensive enclosure is going to be a sealed design. If you can manage the additional cost of a vented enclosure, the system will play louder, sound better and be more efficient. Yes, the enclosure will be a little larger, but it will be like having two subwoofers and almost twice as much power. Drop by a local specialty mobile electronics retailer today and talk with them about the enclosure options available to help you get the most performance from a subwoofer upgrade.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

  • 1
  • 2
  • 3
  • …
  • 74
  • Next Page »

Recent Articles

A lady in front of a large motorcycle with car audio speakers on each side, looking confused

Motorcycle Speakers and Big Bass – A Match Not Made in Heaven

August 10, 2025 

We were recently talking with the owner of a motorcycle audio manufacturer. He mentioned that consumers seem to struggle with the concept that relatively small motorcycle speakers … [Read More...]

The Mosconi Pro 430

Product Spotlight: Mosconi Pro 4|30

August 4, 2025 

There are hundreds, if not thousands, of different options available when picking an amplifier for your car audio system. Some amplifiers focus on offering a diminutive footprint … [Read More...]

Three tweeters

A Look at the Importance of Tweeter Installation Hardware

August 3, 2025 

High-quality speakers and proper installation are crucial when upgrading your car's audio system. The ease with which your installer can reliably integrate tweeters into your … [Read More...]

Product Spotlight Focal PS 165 SF

Product Spotlight: Focal PS 165 SF

July 28, 2025 

When it comes to premium car audio speaker upgrades, most enthusiasts know that Focal offers more solutions than any other. With offerings ranging from OE replacement to benchmark … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Audio Innovations

Find Us

Audio Innovations

1105 Jim's Lane
Conway, AR 72032
501-358-6545

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Driver Safety Systems
  • Marine Audio
  • Motorcycle Audio
  • Radar and Laser Detector Systems
  • Remote Starters

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 6:00 pm

Copyright © 2025 Audio Innovations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...