Audio Innovations

Car Stereos, Auto Customizing, Mobile Electronics

1105 Jim's Lane, Conway, AR 72032 501-358-6545
  • Home
  • Services
    • Car Audio
    • Driver Safety Systems
    • Marine Audio
    • Motorcycle Audio
    • Radar and Laser Detector Systems
    • Remote Starters
  • About Us
  • Location
  • Customer Reviews
  • Contact Us
  • Facebook
  • Instagram

How Do I Know if My Car Audio DSP Is Adjusted Properly?

DSP Adjustment

It should go without saying that a car stereo system designed around multiple amplifier channels and a DSP is the easiest way to get great sound in your vehicle. The technician working on your vehicle has complete control over the output level, sound arrival time and the frequency response of each speaker in the system. The result should be a sound system that is as optimized as possible – assuming the calibration process is executed properly. There are still many misunderstandings about what a DSP can and can’t do. This article will provide a few things to listen for to help you determine whether your DSP has been adjusted properly.

What Is a DSP?

What is a digital signal processor? Though we have covered the topic extensively, we’ll offer a quick “too long; didn’t read” for those new to our magazine. A DSP is a computer chip optimized to perform many calculations quickly and repeatedly on a sequence of digital samples. These samples are typically a digital representation of an analog signal. In the case of our car audio systems, the analog signals are the left and right channels of the audio recording. DSPs are common in other applications, including video processing and radio frequency transmission analysis. Modern recording studios and live venues use DSP-based mixing consoles.

DSP Adjustment
Escort’s M14 radar receiver uses an Analog Devices Blackfin DSP to pick out police radar signals and reject noise.
DSP Adjustment
The Vista One Carbon is a high-end DSP-based mixing console ideal for live, broadcast and studio applications.

How Is a DSP Used in Car Audio Systems?

In car audio applications, a DSP serves many purposes. A DSP can combine signals from multiple sources, adjust levels, apply equalization and frequency filtering, and add delay to a signal. In short, it helps the technician connect to a factory-installed stereo, optimize the signal to each speaker and compensate for your vehicle’s acoustics.

If your car stereo uses an aftermarket head unit, your installer will likely connect a DSP directly to the radio’s preamp outputs using RCA cables. Suppose you have a vehicle that uses a digital interface between a factory-installed head unit and an amplifier like A2B, MOST, AVB or a SP/DIF connection. In that case, you may have an interface that feeds a digital signal to your DSP over a fiber-optic cable. Finally, many audio system upgrades require recombining signals from multiple factory-installed amplifier channels and removing any processing to create a full-bandwidth signal. A high-quality DSP can help with this.

After the audio signal is in the DSP, the first order of business is to route that signal to the appropriate output channels. You don’t want the left-channel signal from the radio going to the right-side tweeter. Also, you’ll likely want the signals from both the left and right channels going to the subwoofer signal. All reputable DSPs have a signal-routing mixer to perform these tasks.

Next, the technician configuring the system must filter the signals to each speaker. You don’t want bass information going to a tweeter or midrange information to a subwoofer. A properly trained technician knows which high- and low-pass crossovers to apply to the speakers in your vehicle based on their design, directivity characteristics and the speakers that are operating in adjacent frequency ranges.

The last step is for the technician to use a calibrated microphone system and measure each speaker’s acoustic output at the listening position. Using that information, they can adjust the equalizer to smooth out any peaks or dips caused by reflections in the vehicle. Finally, the output level of each speaker is adjusted to ensure that the transition from one driver to another is smooth.

DSP Adjustment
The Audison bit-Tune is an acoustic real-time audio analyzer that uses a microphone array to capture accurate information.

Auditioning Overall Tonal Balance

While a DSP often seems like some mystical black box of audio voodoo, they are quite simple devices. Yet they do have an extensive list of functions and require training and a thorough understanding of the laws of physics to implement properly. A DSP is effectively mandatory if your goal is realism and accuracy from a car audio upgrade. That brings us to the question, how would a consumer know whether the DSP in their car or truck is adjusted properly?

The first thing to listen for is a smooth frequency response. There shouldn’t be emphasis or deficiencies in any frequency range. For example, if the letters S and T seem overly prominent, the equalizer bands around 3 and 5 kHz might need adjustment. If voices are boomy or chesty, there might be too much output around 200 Hz. The bottom line is that if every genre of music doesn’t sound right, then the DSP needs more adjustment.

An idea offered by long-time car audio competitor Harry Kimura is to listen to a well-engineered piano recording. The lowest note on a piano has a fundamental frequency of 27.5 hertz. That’s well below what an audio system without a subwoofer can reproduce with any authority. The highest note has a fundamental frequency of 4.186 kHz. It’s crucial to remember that each note includes several octaves’ worth of harmonics to give the instrument its “sound.” There’s still important audio information beyond 12 kHz from this 4.186 kHz note. If someone plays a scale from the highest to the lowest notes, each should be reproduced by your car audio system with the same volume or intensity. If something is too loud or quiet, the DSP’s equalizer needs adjustment.

DSP Adjustment
The Rockford Fosgate DSR1 DSP has eight output channels and includes an iDatalink Maestro AR interface.
DSP Adjustment
The bit Nove DSP from Audison includes six analog inputs, two digital inputs and nine outputs for extremely flexible audio system design.
DSP Adjustment
The compact ARC Audio PSM-Pro DSP includes audio processing features typically found only on high-end models.

What about the Bass?

We can confidently tell you that a car audio system that plays the bottom two octaves of a piano at the same level as middle C won’t be much fun on the road. It might be super-accurate, but the bass will be drowned out when competing with wind, road and exhaust noise. The subwoofer in your car audio system should be 8 to 12 dB louder than the midrange for the system to be enjoyable while in motion. If you’re a basshead, fill your boots!

The Source of Sound

The second criterion to listen for is staging and imaging. Imaging refers to the ability of an audio system to render the sound of specific instruments accurately on a virtual soundstage. Think of yourself listening to a live acoustic music performance. A four-piece jazz band with a drummer, pianist, upright bass player and lead singer would be a perfect example. No matter where you sit in the audience, the sound source from their instruments is easy to detect. You’d know if the lead singer walked across the stage while performing, even if you didn’t see them.

In your car audio system, you should be able to pick out the specific instruments in a well-recorded track. If the singer and drummer were in the center of the stage, they should sound like they are in the center of the dash or windshield. If the bassist is on the left, then the sound should come from in front of the steering wheel. If the piano was on the right side of the stage, it should sound like it’s coming from the airbag on the right side of the dash.

Here’s a good example of what you should hear if the system has a solid soundstage and good imaging. “Listen to Money for Nothing” by Dire Straits. At 1:12 into the track, Pick Withers’ drums pan from the far right to the center. Each drum appears to have a dedicated microphone, and their signals are panned to fill the soundstage. As he hits different drums, the sound source should move. The system isn’t configured correctly if the drums are a big blurry mess.

DSP Adjustment
Dire Straits’ Brothers in Arms album is a popular choice for auditioning high-end audio systems because of its excellent recording quality.

How Do You Want Your System to Sound?

The above description assumes you wanted your car audio system calibrated as though you were in the audience. The other option is to have the system configured as though you were on stage with the performance. In this scenario, the sound in your car would be more like what you’d hear when wearing headphones. The vocals and drums might be in the middle of your head. The bassist would be to your left, and the piano to the right. Some call this a “club” sound, where music comes from around you. The product specialist you’re working with to design your mobile audio system should ask you about your listening preferences during the client qualification process.

A car audio system with high-quality amplifiers and an excellent DSP will offer better focus for each instrument. We call this better imaging. We’ve heard many factory-installed audio systems where the center-stage vocals came from a space the size of a large pizza. The best aftermarket systems we’ve listened to reproduced that same track from a point in space the size of a tennis ball. It’s not just equipment that achieves this goal. The technician adjusting the DSP needs to know what to look for and what to ignore in the acoustic measurements to get this right.

DSP Adjustment
In the audience or on the stage – the shop installing your DSP must ask how you want the system configured. Image: mcmillanpazdansmith.com

What Can’t a DSP Fix?

There are some product and installation issues that a DSP can’t resolve. If you’ve chosen speakers with resonance and distortion issues, the DSP can’t remove that harmonic information added to your music. If you find the high-frequency response harsh or fatiguing, you are probably hearing harmonic distortion from your speakers. The only solution is to switch to better-designed speakers that include distortion-reducing designs and technologies.

The same goes for sloppy midbass. If a rim hit on a tom drum sounds like a thud or bump rather than a sharp crack, you may have a speaker or amplifier distortion problem. Audio components (primarily amplifiers and speakers) with high levels of intermodulation distortion typically cause muddiness or unwanted warmth in the lower midrange frequency range. No amount of DSP adjustment can fix this.

DSP Adjustment
An example of an exceptional intermodulation distortion measurement from a DSP-equipped car audio amplifier.

Learning About High-Quality Audio Systems and Accurate DSP Adjustment

This article kicks off a series on how to listen to audio systems and components from a technical perspective. We’ve noticed that many consumers think certain products “sound really good” when they are, at best, mediocre. We hope that educating everyone about what to listen for when auditioning speakers and listening to demo vehicles will help people purchase solutions that offer the best performance possible for their investment. As you learn what high-quality car audio upgrades sound like, use that information when working with a local specialty mobile enhancement retailer to pick the best upgrades possible.
This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Do I Need a Line Output Converter To Add a Car Amplifier?

Output Converter

We’ve talked at length about how car audio line output converters work and have even compared a few to see which sound best. We skipped over a discussion on whether a car audio amplifier upgrade needs a line-output converter. Let’s dive in!

What Does a Line Output Converter Do?

A high-quality line output converter serves three purposes. First and foremost, it can reduce the voltage from a radio or amplifier output to something acceptable on the preamp input of an amplifier. Second, it converts a bridge-tied load (BTL) signal to a single-ended signal that works with all amplifiers. Thirdly, it can provide a remote turn-on signal to activate an amplifier when you turn on a factory radio.

Most car audio amplifiers can only accept up to 5 or 6 volts on their preamp inputs. This voltage is equivalent to the output of an amplifier that produces a maximum of 9 watts of power into a 4-ohm load. Since most car radios can produce at least 20 watts, equivalent to just under 9 volts of signal, we need circuitry to reduce that level and not over-drive the input stage on the amplifier.

All car radios we’ve tested use the bridge-tied load speaker output configuration. This speaker driving method allows a radio to provide more power than a single-ended design without needing a dedicated switching power supply. If you’ve asked a technician to install an inexpensive or poorly designed amplifier, it will likely need a single-ended signal.

If you have a factory-installed radio in your car, truck or SUV, the chances of a wire going live only when the radio is on is quite unlikely. You’ll need a way to tell the new amplifier when it’s time to wake up and get to work. A good-quality line output converter can do that.

Modern Amplifier Features – Automatic Turn-On Circuits

If you look at most high-quality amplifiers on the market, you’ll see they include some sort of remote turn-on detection circuitry. Some of these circuits monitor the input connections on the amplifier for a presence of an audio signal. This is usually called a signal-detect turn-on circuit. Others look for the 55 to 6 volts of DC offset found on the output of BTL amplifiers as would be used in a car radio. These circuits are called DC offset or BTL detection solutions.

Output Converter
The DPower 1 from Hertz includes their ART Auto Turn On/Off Circuitry to simplify installation.
Output Converter
The XM-4ES from Sony’s Mobile ES line includes a switch that will activate the remote turn-on detection feature.
Output Converter
Rockford Fosgate’s Prime-Series R2-300X4 four-channel amplifier includes an Auto Remote Turn-On option.
Output Converter
X2-Series amplifiers from ARC Audio include both signal and DC offset detection remote turn-on circuits for maximum installation flexibility.

Car Audio Amplifier Differential Inputs

Decades ago, car audio amplifiers used the same single-ended RCA input circuitry as a home stereo receiver. Reputable car audio equipment manufacturers realized that switching to balanced differential circuitry inputs dramatically reduced the chances of ground loops that could cause unwanted engine noise in an audio system. This balanced input circuitry also helps eliminate any unwanted noise that the interconnect cables might have picked up as they run through the vehicle.

We’ve written a few detailed articles on the importance of balanced differential inputs and how to test an amplifier to make sure it has this feature. Don’t bother with amplifiers that don’t use differential inputs. You’re only asking for headaches and noise.

Too Much Preamp Voltage

It’s not often you hear the phrase “too much voltage” in the context of car audio discussions. With that said, if you feed too much signal to the RCA inputs on an amplifier, both the input and output can add huge amounts of distortion to your audio system. This distortion is called clipping.

Designing a car audio system upgrade requires an understanding of how the factory-installed audio system works. Your installer might need to take frequency response and amplitude measurements before recommending products. Some factory-installed subwoofer amplifiers can produce just shy of 40 volts of signal.

If you’re shopping for an amplifier to add to a factory-installed radio or amplifier, choose one that can accept a wide range of voltages. Some amplifiers have dedicated speaker-level input terminals. Others have a switch that attenuates the signal on the RCA jacks. Some DSP-equipped amplifiers have digitally selected input voltage ranges.

Output Converter
The Audison Forza AF M4D four-channel amplifier can accept up to 22 volts of signal on its speaker-level inputs.
Output Converter
Sony’s Mobile ES Amplifiers will accept up to 16 volts on the RCA jacks when set to their high-voltage range.
Output Converter
Rockford Fosgate’s Punch-Series P600X4 amplifier can accept up to 12V on the RCA inputs without any switches or adapters.
Output Converter
The Blackbird DSP amplifier from ARC Audio will accept up to 32 volts on the RCA inputs. Four input ranges are selectable in the ARC DNA software.

Questions To Ask When Purchasing Audio Upgrades

If you want to add an amplifier to your car audio system, you’ll want to ask the product specialist you’re working with some questions. Aside from everything we’ve suggested in our Buyers Guides, you need to know what accessories they plan to use for the installation. If they say you need a line output converter, ask what it would cost to move up to an amplifier that can accept the full signal from the source unit and turn itself on and off automatically without any adapters. The chances are good that the higher-quality amplifier won’t just simplify the installation but will likely sound better. If they insist a line-output converter is still required, ask why.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, Driver Safety, New Category Name, PRODUCTS, RESOURCE LIBRARY, UTV Audio, Vehicle Security, Vinyl Graphics, Vinyl Wraps, Wheels and Tires, Window Tint

How Is the Power from My Amp Divided Between My Subwoofers?

Amp Power

We see a lot of questions like “My car audio amp can produce 800 watts; how much power does each of my subs get?” If you aren’t versed in the calculation basics of Ohm’s law, the answer might not be intuitive. Let’s dive into the math and logic that will let us calculate how the power from an amplifier is distributed through multiple speakers or subwoofers.

How Much Power Does an Amplifier Produce?

Without going off about the unimportance of power production versus amplifier quality, we should discuss what determines how much power an amplifier can produce. Most car audio amps use a switching power supply that is designed to chop up and boost the 12 to 14 volts from the battery and alternator, then regulate it to fixed DC voltages that drive the output devices in the amplifier. We refer to these as rail voltages, and they determine the maximum voltage available to the speaker terminals and, ultimately, the speakers or subwoofers.

If we use the example of an amplifier with +30- and -30-volt rails, we have a maximum theoretical voltage of 60 volts that we can apply to the speaker. Ignoring some losses through the output devices themselves, this amp could provide 900 watts into a 4-ohm load. The formula to calculate power given voltage and resistance is P = V^2/R.

Unless the amplifier uses a stiffly regulated power supply design, the rail voltages are typically a fixed multiple of the supply voltage. We’ll ignore some losses and say 30 volts is 2.08 times the supply voltage of 14.4 volts. If the supply voltage drops to 12 volts, our rail voltage would then drop to 25 volts, and we’d only have 50 volts we could use to drive a subwoofer. Our maximum theoretical power is now only 625 watts. This example highlights the importance of ensuring that the most possible voltage is delivered to your amplifier and why you should never skimp on power wiring.

How Amplifier Power Is Divided into Multiple Subwoofers

Our example so far has discussed a single 4-ohm load. What if we have two 8-ohm subwoofers wired together to the amp? How much power can it produce? The answer depends on how the subwoofers are wired. If the subwoofers are wired in parallel to get a net load impedance of 4 ohms, then the amp would produce 900 watts – the same as with a single 4-ohm load. Because both loads are identical, that 900 watts of output is shared evenly between the drivers, with 450 watts going to each.

Now, what happens if we decide to wire the subwoofers in series? An 8-ohm subwoofer wired in series with another 8-ohm subwoofer gives us a net load impedance of 16 ohms. Our amplifier can only produce 156.25 watts into a 16-ohm load. As both subwoofers have the same impedance, the power to each sub is divided evenly, with each receiving 78.125 watts. It’s very unlikely that we would want to run an amplifier at 16 ohms, even though it might be quite efficient.

The amount of power an amplifier produces depends on the maximum unclipped voltage it can produce on the speaker outputs, the impedance of the speakers connected to the amp, and how much current the amplifier can supply to the speakers. Why is current a consideration? What if we connect a 2-ohm subwoofer to our example amplifier? Theoretically, the amp should be able to provide 1,250 watts. In order for this to happen, the amplifier needs to be able to supply 25 amps to the load. That formula is I = P ÷ V, where I is current in amps, P is power in watts and V is voltage. For a well-designed, high-power amplifier, 25 amps isn’t an unreasonable amount of current.

What happens if we connect a 1-ohm load to our amp? The theoretical power jumps to 2,500 watts, and the amplifier would need to be able to supply 50 amps of current to the load. If you’ve looked at amplifier specifications where an amplifier’s power output capabilities don’t roughly double as the load impedance is divided by two, it’s likely because the amp can’t provide the required current into the lower impedances.

Amp Power
Four ARC 8 subwoofers powered by an X2-1100.5 by Speed of Sound in Memphis, Tennessee.

Why the Confusion about Amp Power Ratings?

Over the decades, we’ve been taught to think that amplifiers double their power when the load impedance is cut in half. An amp that produces 300 watts into 4 ohms should produce 600 watts into 2 ohms and 1,200 watts into a 1-ohm load. The massive “cheater” amps that were popular in the 1980s and ’90s were often rated similarly to this. However, things have changed significantly.

Let’s look at an example of a modern high-quality subwoofer amplifier like the Rockford Fosgate T500-1bdCP. This amp is rated to produce 300 watts into a 4-ohm load, 500 watts into a 2-ohm load and 500 watts into a 1-ohm load. We can tell from the 4-ohm rating that the amp likely has rail voltages of roughly plus and minus 17.5 volts. Knowing how Rockford Fosgate under-rates their products, the rails are likely running at 19 volts, and that amp would produce roughly 360-ish watts into a 4-ohm load. Nevertheless, let’s stick with the 17.5-volt rails for this discussion. Running a 2-ohm load should then produce just over 600 watts. It’s clear that current delivery into the lower impedance is the limiting factor if the amp is rated for 500 watts. Our math says the amp is limited to about 17.5 amps of current into the speaker load. That’s why the amp doesn’t produce more power into a 1-ohm load.

Amp Power
Three ARC Audio SW10 subwoofers powered by a 1,000-watt ARC 1000.2 amp. Each sub gets 333 watts of power.

Current-Limited Amplifier Design Considerations

Why would a manufacturer of high-quality audio products make a design decision to limit how much current one of their amplifiers can produce? The first consideration is heat management. We’ve tested many Rockford Fosgate amplifiers in the past few years. Their high-mass heatsink designs typically allow their amplifiers to run at maximum output continuously for at least 30 minutes if not more.

While 30 minutes doesn’t seem like a long time, for car audio amplifiers, that’s an amazing performance. We’ve seen compact amplifiers from supposedly reputable brands that overheated and shut down in less than three minutes at their maximum undistorted output. Some Brazilian amplifiers we’ve tested shut down in less than two minutes at full power. Reliability is as important as audio quality – you don’t want your music to stop playing because a poorly designed amplifier overheats.

The second reason for the limited-current design is that the output when driving a 4-ohm load is higher. In a classic design that is closer to doubling its power, the amp would only make 125 watts into 4 ohms if it made 500 watts when driving a 1-ohm load. Amp design is much like speaker design in that you have to trade one performance factor for another. As such, it’s not really a “current limited” design; it’s just optimized in a different way than the car audio industry is used to.

Amp Power
The T500-1bdCP not only sounds great, but its thermal management helps ensure reliable operation.

Guidelines for Amplifier Power Distribution

Here’s the takeaway in terms of figuring out how much power each subwoofer or speaker connected to an amp will receive. First, determine what your net load will be to the amp. Our article about “Ohms and Loads” can help you with that. Next, look at the amplifier’s published specifications to determine how much power the amp should make. If the specifications aren’t compliant with the CTA-2006-D standard, be wary of their accuracy. Finally, divide the expected power from the amp evenly among the subwoofers connected to the amp.

The above comes with a caveat: All the speakers or subwoofers must have the same impedance. We strongly recommend not mixing and matching drivers with different impedances on the same amplifier channels.

A single 4-ohm subwoofer on our T500-1bdCP would receive 300 watts. A pair of 8-ohm subs wired to a 4-ohm load would result in the amp producing 300 watts, and each driver would get 150 watts of power. If we run a single 2-ohm sub on the amp, it would get 500 watts. If we ran two 4-ohm subs wired in parallel, the amp would produce 500 watts, and each subwoofer would get 250 watts of power. A single 1-ohm sub would get 500 watts. A pair of 2-ohm subwoofers wired in parallel would get 250 watts each. Four 4-ohm subs wired in parallel would result in the amp producing 500 watts, and each sub would get 125 watts.

One last word of advice: Loading your amplifier down to lower impedances in hopes of it making more power will dramatically reduce its efficiency and likely shorten its lifespan.

Upgrade Your Vehicle with a Subwoofer System Today!

We’ll circle back to the beginning of this article to remind everyone that power production has no correlation to audio system quality. You could have a 2,500-watt amplifier, but a better-designed 1,000-watt amplifier might sound better and produce bass that is more accurate.

If you have several subwoofers and want help choosing a great-sounding amp for them, drop by a local specialty mobile enhancement retailer and find out about the solutions they have available. They can explain the options for wiring the subwoofers you have or suggest solutions that will offer amazing performance.

Lead-In image credit: Thanks to Bing from Simplicity in Sound in Milpitas, California, for providing the photo of the four Sony Mobile ES XS-W104ES subwoofers.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

My Car Stereo System Sounds Worse After a Speaker Upgrade. Why?

Speaker Upgrade

Before about 2000, upgrading a factory-installed car audio system was pretty easy. You could start with a new set of speakers and a subwoofer and have something quite enjoyable. In the last few decades, automakers, or more specifically, the companies that supply their audio system components, have learned how to maximize the performance of the inexpensive speakers they use. While this makes the audio systems sound better, the same processes they use can result in a speaker upgrade making your stereo system sound awful. We look at why this happens and how a professional installer can work around it.

Sound Quality = Smooth Frequency Response

Shopping for new speakers can be challenging. Listening to the same music at the same volume level on different options is nearly impossible. High-quality speakers all have one thing in common: flat frequency response. You don’t want to be listening to Lorde or Billie Eilish and have their voices sound hissy and harsh rather than smooth and natural. When voices sound like real voices, a key reason is a smooth frequency response.

Here’s an example of the importance of frequency response. Imagine you have two identical vehicles. One has a set of absolutely top-of-the-line component speakers installed in the doors. A high-quality amplifier provides power to the speakers, and an equally high-quality radio serves as the system audio source. A second identical vehicle has the same amp and radio but uses moderately priced speakers and includes a carefully calibrated digital signal processor between the radio and the amp. Aside from the potential improvement in the accuracy of the soundstage and how the system images, the digital signal processor offers equalization that compensates for reflections and resonances in the vehicle to deliver fairly smooth frequency response. The system with the DSP will sound more realistic and will be more enjoyable.

The companies like Harman, Bose, Panasonic and Sony that provide speakers, amplifiers and radios to car manufacturers understand the importance of smooth frequency response. This factor is key to their ability to deliver good sound with low- to medium-quality speakers. One tactic they use to provide a good listening experience is installing small midrange speakers – instead of a tweeter – on the dash, in the A-pillars or at the top of the door. The equalizer in the radio or amplifier is then adjusted so that these small speakers deliver good high-frequency performance. One of the first times we ran across this was in the second-generation Dodge Intrepid and its sister vehicles. The amplifier in those vehicles had surprisingly impressive processing capabilities, even for its late-’90s vintage. This audio system design technique is now popular in many makes and models of vehicles.

If you’re curious why they use a small midrange rather than just a tweeter, check out this article.

When Speaker Upgrades Go Awry

Here’s a scenario we hear of quite often: A client buys a set of coaxial speakers and installs them in the dash of their pickup truck. The speakers are connected to the factory-installed amplifier. In theory, this should be a nice upgrade, right? The new speakers have far too much high-frequency output because the signal from the factory amp has been equalized for a speaker without a tweeter. The result is a system that sounds overly sibilant. If you’re lucky, you might be able to tame the screechiness by turning down the treble control on the radio. In most cases, though, the result still isn’t ideal.

Speaker Upgrade
Almost 10 dB of high-frequency boost from a BMW sedan. Image: Milton Benavides, Speed of Sound Technologies, Milford, Connecticut.
Speaker Upgrade
10 dB of high-frequency boost from a Toyota sedan. Image: Ken Ward, Elettromedia.
Speaker Upgrade
Almost 12 dB of boost in a Chevy pickup truck. Image: Felipe Tabarez, Autoelectronica, Jesus Maria, Mexico.
Speaker Upgrade
Roughly 9 dB of high-frequency boost from a Chevy SUV. Image: Seth Ranney, Progressive Audio, Medford, Oregon.
Speaker Upgrade
More than 12 dB of boost in a Ford SUV. Image: Christopher Kaufmann, Daryll’s Car Audio, Buffalo, New York.
Speaker Upgrade
Extensive high-frequency boost found in an Audi coupe. Image: Fraser Hiebert, NextGen Automotive Installation, Saskatoon, Saskatchewan.
Speaker Upgrade
High-frequency boost in a Ram pickup truck. Image: Bentley Barchard, Audio Crew, Moncton, New Brunswick.

As you can see from the above measurements, the boosted high-frequency phenomenon is far from isolated. These professionals have the tools and training required to measure the frequency response of the signals coming from the radio or amplifier so they can design an upgrade solution that will sound good.

How To Deal with Boosted High-Frequency Response

So, if you want to upgrade your car audio system, what do you do? First, visit a local specialty mobile enhancement retailer that can make these frequency response measurements. Once they confirm whether your audio system has this high-frequency boost, they can suggest a speaker solution that will offer the performance you want.

If there’s a lot of equalization in the signal, the next step will be to select an amplifier with a built-in digital signal processor or a separate amplifier and DSP. Modifying the signal’s frequency response to the speakers is the only way to ensure that they sound correct.

The DSP will help tame much more than aggressive high-frequency output. The equalization process will resolve inconsistencies in the midrange frequencies, unruly resonance in the midbass and peaky response from a subwoofer. The output of each speaker in the system can be adjusted for amplitude and arrival time so that the system will recreate an accurate soundstage with good imaging.

Speaker Upgrade
The ARC Audio Blackbird is an eight-channel amplifier with an integrated digital signal processor.
Speaker Upgrade
Audison’s AF M5.11 bit is a five-channel amp with integrated digital signal processing.
Speaker Upgrade
The Rockford Fosgate DSR1 DSP has eight outputs with all the tools required to make your car’s audio system sound amazing.

There are a few vehicle platforms where an experienced technician can adjust the equalization presets in the factory audio system. This is a reasonable in-between solution. It could reduce the high-frequency boost but won’t result in audio system performance that matches the inclusion of a properly adjusted DSP.

Another option is to replace the factory-installed radio and amplifier with an aftermarket solution. This upgrade will eliminate any high-frequency boost, but you will have a system with performances similar to the situation we discussed.

However, if you choose a radio like the Sony XAV-9000ES or XAV-9500ES with its built-in eight-band parametric equalizer, your installer can fine-tune the system for the new speakers. There may be other radios with dedicated equalizers for each output channel. However, an EQ that affects all the speakers in the system won’t yield the same results.

Speaker Upgrade
The Sony XAV-9000ES and XAV-9500ES radios have an eight-band dedicated parametric equalizer on each output channel.

Choose an Expert to Help Upgrade Your Car Audio System

One last tidbit of information before we send you off: The technician working on your vehicle will need to test the speaker outputs for the presence of all-pass filters before deciding whether to apply time correction to the new system. Without this information, you may have uneven midrange performance and a severe lack of midbass.

As you can see, upgrading a modern car audio system isn’t all that easy. And not all car audio shops around the country have kept up with the technologies vehicle manufacturers are using to optimize the audio solutions they deliver. If you want your car stereo to sound better, do your research to find a shop with the tools, training and products to deliver on your goals. Finding that shop might take some time and legwork, but if you want your car audio speaker upgrade to sound great, it’s time well spent.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Is Your Radio Turned Off or Killing Your Battery?

Kill Battery

You’d think that something as simple as operating an on/off button or switch would deliver predictable results. These days, many electronic devices remain on and continue to draw small amounts of current, even when you think they’re off. Let’s look at how car radios work regarding their on/off status and how much current they draw.

Parasitic Current Draw Kills Batteries

This term should be very familiar to those adept at troubleshooting automotive and marine electrical systems. A parasitic draw is a circuit that consumes energy when you don’t want it to. The concept is similar to leaving the dome light in your car on overnight after searching for something that has tumbled into that abyss between the seat and the center console.

In reality, a parasitic draw consumes energy that’s unexpected or unwanted. You know that something evident like a dome light would kill a battery. If all the lights are off, but your battery is drawn flat in a day, you must address the problem.

Depending on the features included with your vehicle, even when it’s off, systems can draw upwards of 50 milliamps of current. If you have keyless entry, the receiver is awake and listening for a signal from your key fob. If you have a “smart trunk” system, there’s likely a second receiver in the back of the car listening for a signal from your key fob. All radios with clocks draw a tiny current to keep the clock running.

It’s Not Off; It Just Looks Off

Any device with a momentary on/off button has a tiny computer awake and waiting for the signal to spring to life. Your smartphone is a perfect example of this. The power button on the side or back sends a signal to the microcontroller and tells it to wake up. That microcontroller must draw a tiny bit of power from the battery to listen to the signal. This is one reason why devices with rechargeable batteries drain, even when “turned off.”

A desktop or laptop computer is another example. Not only can they be woken by tapping the power button on the case, but many can monitor a physical network port for a command that will bring the system to life. These commands are called Wake on Lan (WOL) and are great if you want to access a computer at home from a remote location.

Car Radios and Parasitic Draws

Getting to the point of the article, if your car radio doesn’t have a mechanical on/off switch like you might have found in a twin-shaft radio from the ’70s or early ’80s, it will draw a small amount of current from the battery when you turn it off. A better description of the state your radio is in after you press the power button is “sleep mode.” I measured the current consumption of a Sony XAV-AX7000 multimedia receiver in my lab. When on, but the volume turned down, it drew 776 milliamps of current. Pressing the power button to shut it off dropped the current draw to about 2 milliamps.

Kill Battery
The Sony XAV-AX7000 includes Sony’s High-Power 45-watts-per-channel amplifier.

Two milliamps isn’t much current. With that said, your battery’s health isn’t good, and going on vacation or a business trip for a week will affect how much energy is left to start the vehicle. On the other hand, a remote car starter with a two-way remote can draw 15 to 20 milliamps of current. A dashcam might draw upwards of 400 milliamps when in parking mode, which could kill a weak battery overnight.

If you’ve ever looked at the wiring for a typical car or marine radio, you’ll know there are two “power” connections. A yellow wire typically needs to be connected to a constant power source. This wire is what feeds power to the microcontroller in the radio. A red wire should be connected to a switched power source. This wire is usually labeled as “accessory,” and the power source it is connected to should only be live when the ignition is in the accessory or on/run position. This wire typically only provides a signal to the microcontroller and doesn’t provide significant amounts of current to anything in the radio.

Kill Battery
A typical wire harness for a car radio.

When no voltage is applied to the red wire, the radio “turns off.” Once again, this can be misleading because the yellow wire still provides a small amount of current to let the microcontroller monitor the red wire for a signal. We can consider this something akin to a “deep sleep” mode. Electronics manufacturers often refer to this measurement as the Dark Current.

The same Sony radio dropped its current draw to about 300 microamps when the power was removed from the red accessory wire. This current draw performs much better than radios from a few decades ago.

Car audio amplifiers, signal processors and integration interfaces also have small amounts of dark-current draw.

Marine Radios and Parasitic Draws

A little over a decade ago, Clarion introduced a marine radio solution with only two power wires: red and black. The radio was designed to include memory that would retain settings when power was removed from the unit. Items like station presets and equalizer and crossover settings would be retained when you turned on the boat. In a conventional marine radio with three power wires (constant, accessory and ground), radios would forget settings if you removed power from the yellow wire.

Parasitic draws are a concern in marine applications because most boats are only used on weekends. You roam around the lake or river for a few hours Saturday and Sunday, then tie the boat up at the dock for the week. That draw from the radio over the week would dramatically lower battery reserves, and the limited run time over the weekend wouldn’t recharge them fully. Boat batteries don’t last very long as they are often drained heavily and only partially recharged.

The solution is two-fold. If you plan on upgrading the radio in your boat, see if you can find a radio that uses a two-wire connection. One wire would be ground, and the other goes to the accessory or radio circuit. When you turn off the boat, no power is drawn from the battery.

Second, purchase a battery charger for your boat. It can be as simple as a Battery Tender Junior or a premium solution like the CTEK Multi US 7002. We’ve had phenomenal success with the latter; its recondition mode has restored the chemistry and capacity of batteries that less advanced changers and vehicle alternators couldn’t bring back to life. Whatever you decide to use, make sure it’s an intelligent unit that knows when the battery is full and switches to a float mode to prevent the battery from being overcharged.

You can also have a professional install a master battery switch in your boat. This switch makes disconnecting the battery easy if you’re going home from the cottage for the work week.

Kill Battery
A battery switch is a convenient and safe way to ensure that the battery in your boat can’t be drained by a radio or fishfinder.

If your application uses Absorbed Glass Mat (AGM) or some Valve Released Lead Acid (VRLA) battery, your charger should have a specific charging mode for this type. These batteries rest at a slightly higher voltage than conventional lead-acid units. Sorry, we get a little geeky when talking about batteries. Regardless, proper maintenance is crucial to their longevity and reliability. Can you imagine the frustration of heading out on the lake for an afternoon of fun, only to be left stranded because the battery is too dead to restart the motor? What a mess!

Kill Battery
Our favorite battery charger/maintainer/reconditioner is the CTEK Multi US 7002.

Have Parasitic Power Draws Resolved Quickly

If you’ve run into a situation where the battery in your car, truck, boat, side-by-side or motorcycle constantly dies, you likely have a parasitic power draw. A local specialty mobile enhancement retailer can help troubleshoot the system with a current clamp or thermal imaging camera. Once they pinpoint the issue, they can repair or replace the misbehaving component, fix a wiring issue or devise a solution to ensure that your battery won’t die when you’re ready to head to work or school. It could be as simple as something wired incorrectly by an amateur or the incorrect selection of an aftermarket upgrade. Either way, you don’t want your car radio killing your battery.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

  • « Previous Page
  • 1
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • …
  • 73
  • Next Page »

Recent Articles

A car audio amplifier

Car Audio Amp Efficiency Matters More Than You Think

June 15, 2025 

Social media conversations are often a great source of content ideas here at BestCarAudio.com. We were recently talking to someone about why loading down an amplifier isn’t an … [Read More...]

A picture of a orchestra with a sound graph on top of it

The Four Stages of High-End Car Audio – Frequency Response

June 8, 2025 

Listening to a genuinely high-end home or car audio system can be amazing. For those who care about sound quality, several technical considerations separate a very good audio … [Read More...]

The back of a car audio subwoofer on one side and a man with a perplexed thinking face looking at it on the other side

Car Audio Myths: DVC Subwoofers Can Handle More Power

June 1, 2025 

We’re back to bust another car audio myth wide open. This article will discuss the myth that DVC subwoofers can handle more power than a single voice coil driver. After some … [Read More...]

DroneMobile XC Connected Dashcam Security System

Product Spotlight: DroneMobile XC Connected Dashcam Security System

May 26, 2025 

Thieves frequently target vehicles from Hyundai, Kia, Toyota, Lexus, RAM, Chevrolet, and Honda. These vehicles are often stolen for their parts or exported overseas. … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Audio Innovations

Audio Innovations

1105 Jim's Lane
Conway, AR 72032
Phone: 501-358-6545

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Driver Safety Systems
  • Marine Audio
  • Motorcycle Audio
  • Radar and Laser Detector Systems
  • Remote Starters

Store Hours

SundayClosed
Monday9:00 AM - 6:00 PM
Tuesday9:00 AM - 6:00 PM
Wednesday9:00 AM - 6:00 PM
Thursday9:00 AM - 6:00 PM
Friday9:00 AM - 6:00 PM
SaturdayClosed

Copyright © 2025 Audio Innovations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...