Audio Innovations

Car Stereos, Auto Customizing, Mobile Electronics

1105 Jim's Lane, Conway, AR 72032 501-358-6545
  • Home
  • Services
    • Car Audio
    • Driver Safety Systems
    • Marine Audio
    • Motorcycle Audio
    • Radar and Laser Detector Systems
    • Remote Starters
  • About Us
  • Location
  • Customer Reviews
  • Contact Us
  • Facebook
  • Instagram

Vehicle Safety During Cold Weather Warm-Up

Warm-Up

When the temperature outside drops, it’s common for car and truck owners to want to warm their vehicles before driving off. Unfortunately, thieves know this is a great time of the year to steal vehicles idling in driveways and parking lots. Let’s look at how a remote car starter can make it safe and convenient to warm up your vehicle and prevent warm-up thefts.

What Is Warm-Up Theft?

In what police call a warm-up theft, the most common scenario is where a thief would steal your car or truck that you’ve started with the key and left it running. With the key in the ignition, your vehicle is prime picking for someone to hop in and drive away in it.

A question we saw the other day involved vehicles with keyless entry and push-to-start ignition systems. The person asked whether their car was safe if they had the key fob in the house. Unfortunately, once started, if a thief can get into the vehicle, they can drive off. If you can lock the doors with your key fob once you start it, that’s a huge step in keeping the vehicle safe.

Remote Car Starters and Vehicle Safety

Unlike starting your car or truck with a key, remote car starters are explicitly designed to keep your vehicle safe until you are ready to leave. When you press the start button on the remote or a smartphone app, a message is sent to the remote start controller in the vehicle. The system will start the engine and monitor the brake and clutch pedal. You unlock the doors with the provided remote when you want to drive away. The next step depends on the vehicle. You’ll put the key in the ignition and turn it to the run position for cars or trucks that still use a key. Then you can drive away. Vehicles with keyless entry systems vary in their operation. Some require you to press the start button, but many allow you to drive off with no additional interaction.

While the car is running under the control of the remote starter, the doors are locked. This simple security measure ensures that it’s just as difficult to enter the vehicle as when parked. As we mentioned, the starter system monitors the clutch and brake pedal. If someone pushes either pedal without the ignition being on (with the key or with the presence of the key fob), the engine will shut down immediately.

Some vehicles need to unlock the doors during the starting process. This process typically takes a few seconds. The doors will lock again once the vehicle starts. Theoretically, if a thief knows you start your truck at 8:05 every morning, they could open a door when they unlock. However, they won’t be able to steal the vehicle as the system continues to monitor the clutch and brake pedal. You can’t put a manual transmission into gear without the clutch. Similarly, you can’t move an automatic transmission from the park position without pressing the brake.

Warm-Up
All quality remote car starters monitor the brake pedal. If someone were to press that pedal, the system would shut down to keep your vehicle safe.

Additional Benefits of a Remote Car Starter System

Aside from allowing the engine to start warming, other features in most vehicles can be active automatically. Most high-quality remote car starters include a temperature sensor. If the starter system detects that it’s around freezing, it can automatically activate the rear window defrost, heated seats and a heated steering wheel. If your vehicle doesn’t have heated seats, adding them to most vehicles is typically straightforward for a reputable specialty mobile enhancement retailer.

Another option for many remote starters is to upgrade the system with security features. These include sensors that monitor the vehicle for impacts, motion, tilting or glass breakage. If you are worried about someone stealing a set of wheels or your catalytic converter, adding a security sensor is a good investment.

Warm-Up
Adding security features like a siren and security sensor to your remote starter will help prevent vandalism and theft.

The Importance of Remote Starter Range

Depending on where you park your vehicle and the distance to your home, you may need a remote starter system that offers a lot of range. The range is the distance between you and the vehicle. Higher-power transmitters in the key fobs provide more range. While outright distance might not be critical, the ability of the signal to penetrate through building walls is often an issue. A starter system that offers 1,500 feet of range might not have enough power to successfully transmit a signal to a vehicle in a parking garage. What’s more likely a problem is that you might not be able to start the vehicle in your apartment or an office building. A system with 2 or 3 miles of range is a better choice.

Warm-Up
Regarding range, nothing in the industry beats the Compustar T13. The system also includes a Drone smartphone interface option.

Two-Way Remotes Confirm Starter Functionality

Another consideration when purchasing a remote starter is to choose remotes with two-way operation. Conventional one-way remotes broadcast a signal to the vehicle. You have no way of knowing whether the signal was received and executed. Two-way remotes also broadcast signals, but they will confirm that the command was received and executed by beeping and flashing an LED or an icon on an LCD screen. You’ll never have to wonder whether the vehicle is warming up if you have a two-way remote.

Warm-Up
The Compustar 2WR3 remote starter includes two-way communication and up to 3,000 feet of range.

Is There a Safe Way to Warm a Vehicle without a Remote Car Starter?

If you haven’t invested in a remote car starter, is there a safe way to warm up your vehicle? If you have to leave a key in the ignition, use a second set of keys to lock the doors. You’re still at a much higher risk of someone breaking a window and stealing the vehicle.

Choose an Expert to Install Your Remote Start System

When shopping for a remote car starter, look for a facility with the best products and services. Finding this will usually mean you won’t pay the lowest price. However, here are a few things to think about: The technician working on your vehicle should fully understand how the starter system integrates into your specific vehicle. They should be able to test the function of the wiring to ensure that it matches what the hardware is looking for. They should use reliable electrical connection methods so that the starter and vehicle remain reliable. The starter hardware you purchase should have a good controller and remote warranty. The remotes should be, at the very least, weather-resistant and durable.

The shop should start the client qualification process by asking about your vehicle’s make, model, year and trim level. They will likely need to see the key or key fob to confirm whether there is any anti-theft technology already in the vehicle. Next, they should ask you where you park the vehicle at home, at work, and when you’re shopping or out for dinner. Using that information, they can suggest a remote solution with enough range to ensure that the system will start every time. Think about it: What good is a remote starter if it doesn’t work when you’re at work? You can learn a lot about a shop by the questions they ask. Be sure to look at examples of their work on their website and social media.

Warm-Up
The shop you’re working with should ask specific questions so that you get the correct remote starter solution for your needs.

Make It Difficult To Steal Your Vehicle.

Don’t allow thieves to steal your vehicle. Invest in a high-quality remote car starter to ensure someone can’t hop in your car or truck and drive away. Check out our Dealer Locator to help find a shop near you.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Driver Safety, Remote Car Starters

Product Spotlight: Momento M8 Max

Momento M8 Max

There are now hundreds of dash cameras on the market. If you are serious about protecting yourself from fraud and false accusations or simply want to capture those incredible once-in-a-lifetime moments, then you want a high-quality camera with excellent image quality. Momento’s latest flagship dash camera is called the M8 Max, and it’s the perfect choice for your car or truck. Let’s check it out!

Momento M8 Max Features

Let’s start by looking at the specifications of the new Momento M8 Max, which is also known as the MD-8400. This is the top-of-the-line in the three-model series. The M8 Max features a 4K Sony IMX image sensor for razor-sharp image capture at 30 frames per second. A secondary camera that can be pointed out the rear window features full HD (1920 x 1080 resolution) is also included in the kit. The system comes with a 64 GB memory card but can be upgraded to a 256 GB card for more storage. The M8 Max includes a GPS receiver to store vehicle location and speed.

The main power cable is also included in the box. This is a hard-wired cable, not a cigarette lighter plug. As such, your installer will need to find suitable constant 12-volt, switched accessory and ground connection points under the dash. A micro-SD to SD card adapter is also included.

Momento M8 Max
The camera on the Momento M8 Max can be adjusted to work with the slope of any windshield – from a Corvette to a transport truck.
Momento M8 Max
The M8 Max is ready for your installer to integrate into your vehicle to provide the ultimate protection against fraud and staged accidents.

Two- and Three-Camera Support Modes

Out of the box, the M8 Max is set up to handle dual-camera recording. However, if you want to add a third camera, like the IC6 interior camera, the M8 Max can be flashed with firmware to record from three sources simultaneously. The IC6 is ideal for taxis, limousines, buses, rideshare and company-owned vehicles. When flashed into three-camera mode, the system captures video from the front camera in 2K mode due to data storage bandwidth constraints.

Momento M8 Max
The M8 Max kit includes a full-HD resolution rear camera to capture what happens behind your vehicle.
Momento M8 Max
The IC6 Infrared interior camera is a perfect upgrade for taxi, Uber or Lyft operators to monitor occupant activity.

ECO Parking Mode

An essential feature of the M8 Max is its ECO parking mode. Unlike conventional cameras that use the image sensor to monitor the area in front of the vehicle, the M8 Max uses a low-power radar transceiver. If someone walks in front of your car or truck while the camera is in parking mode, the system will wake up and capture a video of the activity. Once the object has passed, it goes back into ECO Mode. The benefit of radar-based monitoring is that the camera consumes about 90% less power than video monitoring units. This means less drain on your vehicle battery and days of monitoring instead of hours.

Voice Recognition

The M8 Max includes voice recognition features. You can say “Hi, Momento,” then wait for the chime and say “Save Video.” The system will start a manual recording that is saved to a dedicated folder on the micro-SD card. Other voice commands include Enable and Disable Mic, Enable and Disable Wi-Fi, Switch Wi-Fi (between 2.4 GHz and 5 GHz modes), and Enable and Disable Privacy mode.

Compact, Flexible Design with Manual Controls

The Momento M8 Maxi-fi is one of the lowest-profile dash cameras on the market. It attaches to your windshield with the included 3M VHB tape behind the rearview mirror. Once in place, the camera tilts upwards or down to ensure perfect coverage in front of the vehicle. The viewing angle is 112 degrees on the horizontal plane and 96 degrees vertically.

There are two buttons on the face of the Momento M8 Max, making it very intuitive to use. Pressing the left Wi-Fi button toggles Wi-Fi on and off. Pressing the right REC (Record) button initiates a manual recording in the event you witness something. Holding the REC button for three seconds turns off the mic. Holding the Wi-Fi button for 10 seconds will format the memory card.

The Momento Smartphone App

All three Momento M8 dashcams are compatible with the free Momento App for Android and iOS devices. Once you have connected your smart device to the M8 Max using 2.4 or 5 GHz Wi-Fi, the app lets you view the live video feed from the camera. This is how your installer will initially set up the camera.

The app lets you view and download stored files from any of the five galleries: Driving, Driving Events, Parking, Parking Events and Manual. You can preview the video at 600p resolution or download the full-resolution version and save it with your files or images for sharing.

The app provides access to many configuration options. These options include sensitivity adjustments for the integrated accelerometer to determine when event videos will be recorded. You can also set the automatic low-battery cut-off voltage or allocate different storage space for driving and parking videos. You can also change vehicle speed units between MPH and KM/H, depending on whether or not the camera uses radar parking mode, camera exposure, and the optional Travelapse mode. In Travelapse, the camera records at one frame per second to compress a long trip into a short video. If the accelerometer detects an impact, the system will store a 30-frame-per-second video starting seven seconds before the event trigger. The app also allows you to initiate a firmware update if and when it is introduced.

Momento M8 Max
The Momento App provides access to stored videos and system configuration settings.

The Ultimate Driving Protection Solution

If you want a premium dash camera with excellent image quality and class-leading features, visit a local authorized retailer and ask for a demonstration of the Momento M8 Max. They can complete the installation to ensure your camera will work reliably to capture everything that happens while you’re driving.

For more information on Momento safety products, visit their website. You should also follow them on Facebook and Instagram. Finally, their YouTube channel has videos about all of their products.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Driver Safety, PRODUCTS Tagged With: Momento

What Is GPS Locating and How Does it Work?

GPS Locating

Undoubtedly, you’ve heard the term GPS. It’s not uncommon for consumers to refer to navigation software like Waze, Google Maps, Apple Maps or a portable navigation device from Garmin or TomTom as a GPS. Unfortunately, giving these solutions the GPS title is incorrect. Let’s look at GPS, how it works, and how similar technologies are evolving.

What Is GPS?

The Global Positioning System (GPS) is one type of global navigation satellite system (GNSS). A GNSS uses an array (also called a constellation) of satellites that broadcast extremely accurate time signals. A receiver on the ground (or in your vehicle, a portable navigation device or a smartphone) receives several of these signals. Based on the information from multiple satellites, the receiver can calculate its location and altitude.

GPS was a project started in the early 1970s by the U.S. Department of Defense to provide accurate location information to military troops and was initially called Navstar GPS. Previous terrestrial locating systems such as Decca, LORAN and Omega used longwave radio transmissions from ground-based antennae. A receiver would capture a master signal, then signals from slave transmitters. Analyzing the time differences between the signals allowed for location calculation.

GPS uses a satellite constellation that circles the globe in medium Earth orbits about 20,000 kilometers above the ground. The first satellite was launched in 1978, and the full constellation was completed in 1993. There are currently 32 operational satellites, and the United States Space Force operates the system.

How Does GPS Locating Work?

Each GPS satellite orbits the Earth once every 11 hours, 58 minutes and 2 seconds. Each satellite continuously transmits a signal containing the satellite’s orbit details and precise time information from an onboard atomic clock. The receiver can calculate the distance to the satellite by comparing the time that the signal left the satellite to when it arrived at the antenna. Once the receiver has distance information from several satellites, it can attempt to pinpoint a location using a process called trilateration.

GPS Locating
The red circle on the Earth’s surface represents possible locations equidistant from the satellite.

In the image above, we see a circle on the Earth. This circle represents all the possible locations where the distance between the ground and the satellite is equal. Let’s say the satellite is 26,000 kilometers away from this location. It would take 0.0867266647515195 second for the signal from the satellite to reach any place on this red circle. This information alone doesn’t tell us much about the location, other than perhaps what part of the planet we are on. We likely already know that. Let’s add another satellite.

GPS Locating
The yellow and red circles represent possible locations equidistant from their respective satellites.

We’ve added information from a second satellite, shown by the yellow circle. This satellite appears to be a bit farther away from our location at 29,000 kilometers. It would take the signal from the satellite 0.0967335876074641 second to travel that distance.

Whatever GNSS receiver we are using can analyze the data from the satellite and determine that we are 26,000 kilometers from one source and 29,000 kilometers from the other. This information gives us two possible locations on the Earth’s surface. The small green dots in the image above mark these locations. We are close to having our position, but we need more data. One more satellite is required.

GPS Locating
The yellow, red and violet circles represent possible locations equidistant from their respective satellites.

We’ve added a third circle. This satellite might be 22,000 kilometers away. As such, we know the time it takes for the data to arrive at our receiver should be 0.0733841009435934 second. Only one location on the Earth has these three signal travel times to their respective satellites. The blue dot represents that location.

Satellite-Based Positioning System Accuracy

Unfortunately, the clock on our GPS receiver is nowhere near as accurate as the atomic clocks on the $250 million satellites. This reduction in timing accuracy decreases the location accuracy as we have to throw away some of those decimal places from the timing calculations. Some quick math shows us that limiting the timing accuracy to eight decimal places reduces the accuracy to an area of over 2 meters when the satellite is far away and about 30 centimeters when the satellite is close.

Other issues like atmospheric effects can cause timing errors. Part of the cost of operating GPS is constantly checking and calibrating each satellite’s signals. High-precision receivers at fixed locations on the ground continuously monitor the signals from all the orbiting satellites. Measurement of errors because of humidity, atmospheric pressure and ionospheric delay can reduce accuracy to dozens of kilometers. The operators use data from fixed ground stations to create compensation signals transmitted back to the satellites to counteract these and many other errors.

In real-world applications, GNSS systems require data from at least four satellites, as this allows for some error correction. Consumer-level GPS receivers typically have a published accuracy of about 30 centimeters or 1 foot. The latest high-precision receivers can provide locations with an accuracy of 8 mm in longitude and latitude and 15 millimeters in altitude.

If you’ve seen a YouTube video of a 3D drone show, they use GNSS modules that provide location accuracy with real-time precision of about 1 inch.

Below, a fleet of 200 Lumenier Arora light show drones doing testing at the Freedom Factory in Florida.

Are There Alternatives to GPS Locating?

While everyone talks about GPS locating as the de facto standard in GNSS systems, the reality is that many similar systems are in operation around the world. Aside from the U.S.-operated GPS, the Russian Federation operates GLONASS, China has the BeiDou system, and the European Union has Galileo. There are also regional systems like India’s NavIC and Japan’s QZSS. As of this article’s writing, there are 136 GNSS satellites in operation around the Earth, with 15 more as backups or in various commissioning stages.

The highest precision receivers, like those used for military and surveying, can simultaneously receive location data from multiple systems to increase accuracy. Many solutions, like Galileo, offer precision down to 1 centimeter or 0.39 inch with access to encoded data.

How Do We Use GNSS Services?

Navigation systems are among North America’s most popular consumer applications for GNSS information. Whether you have a portable navigation device (PND) like a Garmin or TomTom or rely on a smartphone-integration solution like Google Maps, Apple Maps or Waze, these systems pinpoint your location on a map database using a combination of GPS and location calculation using a system called Assisted GNSS. If you’ve ever put an iPhone into airplane mode, you may have seen a message about location services being more accurate when connected to a cellular service. Assisted GNSS downloads position data from a server over the cellular data network. In short, this technology knows which cellular towers you are close to and can use that information to help triangulate your location. Data about which GNSS satellites are in (relatively) close proximity is also downloaded to speed up the acquisition time of the GNSS receiver.

GPS Locating
Navigation software like Google Maps is a popular application for GNSS information.

Of course, tracking and locating systems like the popular DroneMobile solution from Firstech combine a GNSS receiver with a cellular data radio. You can control a Compustar remote car starter or security system from the DroneMobile app on your smartphone. If you’ve signed up for location-based services, you can pinpoint the position of your vehicle or configure location-based alerts to help you monitor your car or truck.

GPS Locating

GPS location information and tracking are great for hikers who want to venture into the woods and still find their way back home. Devices like SPOT satellite communication devices use GNSS information with Globalstar satellite messaging services to provide emergency support services almost anywhere on the planet.

GPS Locating
The SPOT brand of communication and tracking devices is popular with adventurers.

There are dozens of commercial applications for GNSS data. Construction of large buildings often starts with surveying. Precision survey equipment uses GNSS data to mark property boundaries and denote parking lot elevations for proper drainage. The corners of building footings are also crucial identifiers based on GNSS data. If you’ve ever wondered how bridges are constructed simultaneously from opposing sides of a river to meet perfectly in the middle, it is attributable to accurate GNSS data. Modern construction equipment also uses GNSS data to provide exact elevation information.

GPS Locating
Companies like Bench Mark in Calgary, Alberta, utilize precision GNSS survey equipment to provide accurate information to clients.
GPS Locating
Some Volvo excavators include Dig Assist, a GNSS-based set of tools to help operators visualize the end product.

Almost every commercial vehicle has location tracking — from airplanes and ships to trains, buses and transport trucks. Companies must keep track of their assets and ensure that they are safe and comply with company usage guidelines. GNSS information can help global operations avoid weather concerns.

GPS Locating
A view of the ships crossing the Atlantic Ocean from MarineTraffic.com.
GPS Locating
Comparing the shipping routes to the weather on the same day shows vessels avoiding hurricanes Lee and Margot.
GPS Locating
In case you were wondering, the Ever Given, the famous ship that blocked the Suez Canal, is back in operation.
GPS Locating
The location and heading of airplanes from all over the globe are available on Flightradar24.com, thanks to GNSS information.

The Future of GNSS Information

So what does the future hold for location information services like GPS, GLONASS and BeiDou? Companies like ALPS Alpine are working on location-based sensors for vehicles as part of the vehicle-to-everything (V2X) push. These products will dramatically improve autonomous driving technologies and help develop intelligent AI-based accident prevention as vehicles can communicate with one another with impressive location precision.

For now, when someone tells you to use GPS to get directions, they are referring to a navigation device that uses some or many forms of GNSS, including GPS locating. If you want to integrate the latest navigation technologies into your vehicle, drop by a local specialty mobile enhancement retailer and ask about a new radio or smartphone integration solution with Apple CarPlay and Android Auto.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Driver Safety

Do I Need a Line Output Converter To Add a Car Amplifier?

Output Converter

We’ve talked at length about how car audio line output converters work and have even compared a few to see which sound best. We skipped over a discussion on whether a car audio amplifier upgrade needs a line-output converter. Let’s dive in!

What Does a Line Output Converter Do?

A high-quality line output converter serves three purposes. First and foremost, it can reduce the voltage from a radio or amplifier output to something acceptable on the preamp input of an amplifier. Second, it converts a bridge-tied load (BTL) signal to a single-ended signal that works with all amplifiers. Thirdly, it can provide a remote turn-on signal to activate an amplifier when you turn on a factory radio.

Most car audio amplifiers can only accept up to 5 or 6 volts on their preamp inputs. This voltage is equivalent to the output of an amplifier that produces a maximum of 9 watts of power into a 4-ohm load. Since most car radios can produce at least 20 watts, equivalent to just under 9 volts of signal, we need circuitry to reduce that level and not over-drive the input stage on the amplifier.

All car radios we’ve tested use the bridge-tied load speaker output configuration. This speaker driving method allows a radio to provide more power than a single-ended design without needing a dedicated switching power supply. If you’ve asked a technician to install an inexpensive or poorly designed amplifier, it will likely need a single-ended signal.

If you have a factory-installed radio in your car, truck or SUV, the chances of a wire going live only when the radio is on is quite unlikely. You’ll need a way to tell the new amplifier when it’s time to wake up and get to work. A good-quality line output converter can do that.

Modern Amplifier Features – Automatic Turn-On Circuits

If you look at most high-quality amplifiers on the market, you’ll see they include some sort of remote turn-on detection circuitry. Some of these circuits monitor the input connections on the amplifier for a presence of an audio signal. This is usually called a signal-detect turn-on circuit. Others look for the 55 to 6 volts of DC offset found on the output of BTL amplifiers as would be used in a car radio. These circuits are called DC offset or BTL detection solutions.

Output Converter
The DPower 1 from Hertz includes their ART Auto Turn On/Off Circuitry to simplify installation.
Output Converter
The XM-4ES from Sony’s Mobile ES line includes a switch that will activate the remote turn-on detection feature.
Output Converter
Rockford Fosgate’s Prime-Series R2-300X4 four-channel amplifier includes an Auto Remote Turn-On option.
Output Converter
X2-Series amplifiers from ARC Audio include both signal and DC offset detection remote turn-on circuits for maximum installation flexibility.

Car Audio Amplifier Differential Inputs

Decades ago, car audio amplifiers used the same single-ended RCA input circuitry as a home stereo receiver. Reputable car audio equipment manufacturers realized that switching to balanced differential circuitry inputs dramatically reduced the chances of ground loops that could cause unwanted engine noise in an audio system. This balanced input circuitry also helps eliminate any unwanted noise that the interconnect cables might have picked up as they run through the vehicle.

We’ve written a few detailed articles on the importance of balanced differential inputs and how to test an amplifier to make sure it has this feature. Don’t bother with amplifiers that don’t use differential inputs. You’re only asking for headaches and noise.

Too Much Preamp Voltage

It’s not often you hear the phrase “too much voltage” in the context of car audio discussions. With that said, if you feed too much signal to the RCA inputs on an amplifier, both the input and output can add huge amounts of distortion to your audio system. This distortion is called clipping.

Designing a car audio system upgrade requires an understanding of how the factory-installed audio system works. Your installer might need to take frequency response and amplitude measurements before recommending products. Some factory-installed subwoofer amplifiers can produce just shy of 40 volts of signal.

If you’re shopping for an amplifier to add to a factory-installed radio or amplifier, choose one that can accept a wide range of voltages. Some amplifiers have dedicated speaker-level input terminals. Others have a switch that attenuates the signal on the RCA jacks. Some DSP-equipped amplifiers have digitally selected input voltage ranges.

Output Converter
The Audison Forza AF M4D four-channel amplifier can accept up to 22 volts of signal on its speaker-level inputs.
Output Converter
Sony’s Mobile ES Amplifiers will accept up to 16 volts on the RCA jacks when set to their high-voltage range.
Output Converter
Rockford Fosgate’s Punch-Series P600X4 amplifier can accept up to 12V on the RCA inputs without any switches or adapters.
Output Converter
The Blackbird DSP amplifier from ARC Audio will accept up to 32 volts on the RCA inputs. Four input ranges are selectable in the ARC DNA software.

Questions To Ask When Purchasing Audio Upgrades

If you want to add an amplifier to your car audio system, you’ll want to ask the product specialist you’re working with some questions. Aside from everything we’ve suggested in our Buyers Guides, you need to know what accessories they plan to use for the installation. If they say you need a line output converter, ask what it would cost to move up to an amplifier that can accept the full signal from the source unit and turn itself on and off automatically without any adapters. The chances are good that the higher-quality amplifier won’t just simplify the installation but will likely sound better. If they insist a line-output converter is still required, ask why.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: Driver Safety, ARTICLES, Car Audio, New Category Name, PRODUCTS, RESOURCE LIBRARY, UTV Audio, Vehicle Security, Vinyl Graphics, Vinyl Wraps, Wheels and Tires, Window Tint

Benefits and Drawbacks of Using Dashcam Parking Mode

Parking Mode

Given the proliferation of fraud, accidents and sheer craziness on the roads today, having a dashcam in your vehicle is, at the very least, a wise investment. These compact camera systems capture video of everything that happens while you drive, in the event you need to share information with the authorities or on social media. Many dashcam systems have a parking mode feature that allows the camera to continue capturing information even when the ignition is turned off. Let’s look at how this feature works and consider its benefits and limitations.

What Is Parking Mode?

Parking mode on modern dashcams is activated automatically when the vehicle remains stationary for a few minutes, or the ignition is turned off. At this time, the dashcam stops storing video on the microSD card but continues to monitor the signal from the image sensor. When there is a significant change in the image content, as would happen when someone steps into the field of vision or a vehicle drives by, the dashcam will store a video of what’s happening. The concept of parking mode is to allow “motion only” videos to be stored while the vehicle is parked. This functionality is similar to security camera systems that are activated by motion. For example, the camera should record what happens if someone approaches your vehicle to vandalize it, tamper with it or try to steal it.

The advantage of motion-activated video recording is that the files on the microSD card should contain only important information and not hours of the same fixed scene. For example, suppose you’ve backed your vehicle into your driveway. In that case, you will likely have videos of the neighbors walking their dogs or people driving home from work, along with anything that might identify someone with ulterior motives toward your car or truck.

Parking Mode
A dashcam can help you identify a thief who has stolen a catalytic converter. Image Credit: Nathanial Arfin

Drawbacks of Parking Mode

A dashcam is a small computer. It has a microprocessor, memory and storage. All computers consume moderate amounts of electricity to operate. When the engine in your vehicle isn’t running, that electrical energy needs to come from the battery. Most dashcams consume between 200 and 500 milliamps of current while in operation.

It should come as no surprise that the battery in your vehicle is limited in terms of the energy it can store. When the vehicle was designed, the battery size was chosen to provide adequate capacity without being so oversized that it represented a weight penalty. If you have an older vehicle, the only circuit that might draw power from the battery when the ignition is off would be the clock in the dash or the radio. These devices might draw a few milliamps. Modern vehicles include many more features and consume a lot more energy. If you have a keyless entry system, the vehicle will have a radio receiver integrated into the security or body control module. Many premium vehicles have telematics systems that use cellular data communication. If a smartphone app is available to remote start or unlock your vehicle, then this radio transceiver will be drawing current while the vehicle is turned off.

How long do these “background” systems take to deplete a modern car battery? Most modern vehicles draw 20 to 30 milliamps of current when fully asleep. If you have a keyless entry system, this amount increases. Let’s use 40 milliamps as a nominal value. The average new car has a group 124 car battery, or at least something similar. Luxury vehicles with more technology might have a larger battery, while economy cars might have a smaller one. When fully charged, these batteries typically have a reserve capacity of 65 to 80 amp-hours. Though most batteries are rarely fully charged, for this example, let’s consider a battery with 70 amp-hours of capacity. If we divide the battery capacity by the draw, we get the hours the battery should last before depleting. In this example, we should be able to leave the vehicle unattended and unused for about 73 days. I’d suggest that starting the vehicle after sitting that long will be VERY difficult. Nevertheless, that’s the math with a 40-milliamp draw.

What happens if we add a dashcam with 350 milliamps of draw to the battery? Suddenly, we only have seven and a half days of capacity. If your vehicle’s battery wasn’t fully charged using an external battery charger, I suggest you’d be lucky to get half of these times and still be able to start the vehicle.

Parking Mode
Professional technicians should have tools to measure how much current is drawn from your car battery.

Automatic Turn-Off Features

When shopping for a dashcam with plans to use the parking mode feature, look for one that a professional installer can hard-wire into your vehicle. These dashcams will have a power and accessory wire rather than a cigarette lighter plug. Second, make sure the camera has an adjustable low-voltage cut-off feature. Your installer can specify the battery voltage at which the camera will shut down and prevent your vehicle’s battery from being drained, so you can’t start it without a boost. Lastly, ask them to set this voltage relatively high. I’d suggest that 12.3 volts should leave you enough reserve to start the vehicle. The absolute voltage depends on the condition of your battery and how often you drive the vehicle.

Parking Mode
If you’re using a dashcam’s parking mode feature, ensure that it has an integrated low-voltage cut-off feature so it won’t drain your vehicle’s battery.

Charge Your Car Battery Properly

If you drain the battery in your vehicle, it MUST be recharged properly. Running the engine for 15 minutes or going for a short drive will NOT put any significant charge back into the battery. Instead, you should connect an external electronic charger to the battery for at least 10 to 15 hours and let it absorb energy slowly. Forcing large amounts of current into a battery quickly only causes unwanted heat that could damage the lead plates and reduce the energy storage capacity.

Parking Mode
An electronic battery charger like the CTEK MUS7002 is a great way to ensure that your car battery is topped up and ready to go.

Alternate Dashcam Parking Mode Technologies

A few dashcam manufacturers have switched from image-sensor-based parking mode monitoring to solutions like radar. For example, the Momento M7 camera we reviewed in 2022 has a feature called Eco Mode. When activated, the camera uses a built-in ultrasonic transceiver to detect motion in front of the vehicle when in parking mode. The benefit of Eco Mode is that the camera only consumes about 32 milliamps of current while monitoring. Yes, the consumption increases while recording, but that only lasts for a minute or so. At 32 milliamps, our 70 amp-hour car battery can last almost 27 days. Call it 20 days, given the assumption it will make several recordings and draw some extra energy. The takeaway is that a camera like this will strain your vehicle’s battery less.

Parking Mode
Dashcams like the Momento M7 include features that dramatically reduce current consumption when monitoring parking mode.

Protect Your Vehicle Intelligently

A dashcam with a parking mode feature is a wise investment if you’re concerned about vandalism or catalytic converter theft. Talk with the product specialists at a local specialty mobile enhancement retailer. They can tell you which cameras they offer include the parking mode feature and discuss how much current each model consumes so you’ll know how long your battery will last.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Driver Safety, Vehicle Security

  • « Previous Page
  • 1
  • 2
  • 3
  • 4
  • 5
  • Next Page »

Recent Articles

AudioControl A600.4

Product Spotlight: AudioControl A600.4

October 13, 2025 

If you have been around the car audio industry for as long as we have, then you have likely used an audio processor in your vehicle. This veteran company is recognized worldwide … [Read More...]

A Look at Bluetooth Sound Quality in Car Audio Systems

A Look at Bluetooth Sound Quality in Car Audio Systems

October 12, 2025 

A If you’re looking for the best performance from your car audio system, the limitations of Bluetooth sound quality might be holding you back. Even if you’re streaming lossless … [Read More...]

The Four Stages of High-End Car Audio – Part 4: Product Quality

The Four Stages of High-End Car Audio – Part 4: Product Quality

October 5, 2025 

The final article in our series on understanding high-end car audio systems moves away from the need for accurate system design, integration, configuration and calibration to … [Read More...]

The Difference Between Lumens, Lux and Candela

The Difference Between Lumens, Lux and Candela

September 28, 2025 

When it comes to upgrading your vehicle’s lighting, a clear understanding of lumens, lux and candela is not just beneficial, it’s crucial. Just like some less scrupulous car audio … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Audio Innovations

Find Us

Audio Innovations

1105 Jim's Lane
Conway, AR 72032
501-358-6545

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Driver Safety Systems
  • Marine Audio
  • Motorcycle Audio
  • Radar and Laser Detector Systems
  • Remote Starters

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 6:00 pm

Copyright © 2025 Audio Innovations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...