Audio Innovations

Car Stereos, Auto Customizing, Mobile Electronics

1105 Jim's Lane, Conway, AR 72032 501-358-6545
  • Home
  • Services
    • Car Audio
    • Driver Safety Systems
    • Marine Audio
    • Motorcycle Audio
    • Radar and Laser Detector Systems
    • Remote Starters
  • About Us
  • Location
  • Customer Reviews
  • Contact Us
  • Facebook
  • Instagram

Product Spotlight: Sony XAV-AX8500 Multimedia Receiver

Sony XAV-AX8500

Floating-face car radios are popular because of their flexible installation options and relatively massive displays. The Sony team has been hard at work updating their products, and the new 10.1-inch XAV-AX8500 digital multimedia receiver is their latest offering in this hot market segment. Let’s see what’s been added to the platform to keep it at the forefront of the category.

High-Definition 10.1-inch Floating Face Display

The first thing you’ll see in the XAV-AX8500 is its classy 10.1-inch HD display. The screen has a resolution of 1280 by 720 pixels. The touch panel has an anti-glare coating and features a capacitive-touch interface. Compared with a resistive-touch interface, the capacitive design obscures the display less, making the information on the display easier to see. The gapless design around the screen lets it blend into the display chassis. Sony leads the industry in clean and classy styling. While it might not be flashy or attention-grabbing on a display board, it looks as though it belongs in your car or truck rather than at the helm of an intergalactic spacecraft.

Sony XAV-AX8500
The 10.1-inch High-Definition capacitive-touch screen features an anti-glare design so information is easily visible.

One of the most interesting features of this model is the multiple adjustments that can be made during and after installation in the dashboard. During installation, your technician can set, in relation to the chassis, the vertical height, the horizontal left to right position, and the depth between the screen and the chassis mount, and can tilt the screen forward and back to accommodate most dashboard slopes.

After installation, during normal use, you can adjust the screen position, with no tools or disassembly. You can swivel the screen up to 15 degrees left or right to fine-tune the viewing angle in relation to your seating position or for a passenger to view it easier, and tilt the screen forward or backward up to 15 degrees as well to mitigate any direct sunlight shining on it or to improve visibility.

The screen interface is similar to what we experienced in the XAV-9500ES Test Drive Review, with five icons across the bottom. You can pull up a complete list of additional source and setting options and swap any of them into these five primary locations. You can also upload custom wallpapers to the radio to add some personalization or choose from several preset color schemes.

This radio includes six physical buttons along the bottom of the display, making it intuitive to adjust the volume, change sources or activate voice recognition for CarPlay and Android Auto. Hard buttons, as they are called, are crucial to using the radio while keeping your eyes on the road.

Sony XAV-AX8500
The chassis of the XAV-AX8500 is a shallow-mount, single-DIN design, making it compatible with many vehicles.

Source Features

Nowadays, most people stream music from online services like Pandora, iHeartRadio or Spotify. The XAV-AX8500 includes Bluetooth streaming with radio-based control over track selection. As a Sony product, this unit also includes the high-quality LDAC codec to improve performance with modern Android-based smartphones.

Apple CarPlay and Android Auto smartphone integration is included, and wireless connectivity means your phone connects just after the radio finishes booting. Speaking of which, the Quick Wake-up design ensures that you have a rearview camera image and music playing seconds after you start the vehicle.

Of course, you can connect a USB memory stick to play MP3, WMA, WAV, ACC, FLAC, ALAC, DSF and even DSDIFF audio files. You can view AVI, MKV, MPEG-4, WMV and ASF video files to pass the time when parked. Speaking of video, there’s a micro-HDMI input beside the USB-C port on the rear panel that will work with a smartphone, laptop or even a media player. It supports video file resolutions up to 720p.

The integrated AM/FM receiver includes RBDS to show station information so you know what track is playing. Your installer can add a SiriusXM satellite radio receiver at installation time for uninterrupted entertainment from coast to coast.

Sony XAV-AX8500
The XAV-AX8500 will automatically connect to your smartphone for communication, entertainment and navigation through wireless Android Auto and Apple CarPlay.

Vehicle Integration and Safety Features

A significant highlight of the Sony XAV-AX8500 is that it supports the iDatalink Maestro RR and RR2 vehicle integration modules. If a Maestro RR is available for your vehicle, the radio can communicate with the vehicle computers to display information like speed, engine rpm, etc. In some applications, Maestro RR interfacing includes climate control and vehicle setting menus. Check with the retailer you’re working with for additional details.

Sony XAV-AX8500
Support for the iDatalink Maestro RR and RR2 allows the Sony XAV-AX8500 to communicate digitally with the computers in your vehicle.

Regarding audio features, the radio has a four-channel amplifier rated for 20 watts RMS per channel into a 4-ohm load at less than 1% THD+N. The front, rear and subwoofer preamp outputs can produce 5 volts of signal, so the gains on amplifiers can be set nice and low.

On the topic of audio features, the radio has a 14-band graphic equalizer and adjustable high-pass crossovers for the front and rear powered and preamp channels. A subwoofer crossover with polarity and level control for the preamp signal is also included. Signal delay settings are available for the front, rear, and mono subwoofer output to fine-tune the soundstage and imaging in your vehicle. Be sure to ask your installer about configuring these features during installation.

The Sony has a dedicated backup camera input and two additional video camera connections that can be used with a forward-facing camera or blind spot monitoring solutions. These camera inputs can be integrated with the Maestro module for automatic activation in a supported vehicle, or by the hardwire triggers included in the video harness. The radio includes an external Bluetooth microphone to optimize outgoing voice clarity.

Sony XAV-AX8500
Two-way crossovers, signal delay settings and a 14-band graphic equalizer allow your installer to fine-tune the performance of your car audio system.

Upgrade Your Vehicle with the Sony XAV-AX8500 Digital Multimedia Receiver Today!

If you’re shopping for a high-performance radio for your car, truck or SUV, visit an authorized Sony car audio retailer and ask about the new XAV-AX8500. Be sure to bring your smartphone to experience the intuitive interface and the fantastic responsiveness in person. For more information about this radio or any of Sony’s car audio products, visit their website or Facebook page.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, PRODUCTS, RESOURCE LIBRARY Tagged With: Sony

Understanding Speaker Quality: OEM Speakers

OEM Speaker Quality

Up to this point, we’ve explained the difference in performance between entry level, poorly designed and premium car audio amplifiers. We hope you’ve found this informative, and now it’s time we took a close look at car audio speakers. No car audio component is more crucial than speakers for reproducing music with accuracy and clarity.

This series of articles will analyze the impedance, frequency response, output capability and distortion characteristics of different car audio speakers. The goal is to give those of you who want to upgrade the clarity and performance of your audio system a clear correlation between design features, specifications and, ultimately, performance.

OEM Speaker Quality
The woven fiber cone and rubber surround of this OEM Honda Civic speaker.

Factory-Installed Honda Civic Speaker

I have a set of door speakers from a Honda Civic for our first subject. This is a woofer (no tweeter) with an effective cone diameter of 125.5 millimeters measured from the middle of the surround on one side of the driver to the center on the other side. The cone is made from a woven yellow fiber which could be of glass or aramid composition. The dust cap is formed from soft textile but is much less rigid. The speaker has a rubber surround, which lasts longer than foam.

Mechanically, the speaker has a relatively small-diameter flat linear spider bonded to a 1-inch voice coil former. There’s no cooling vent on the rear of the magnet or venting under the spider mounting ledge. The basket is formed from injection-molded, glass fiber-reinforced polycarbonate and has six deeply reinforced spokes. As is typical for an OEM speaker, the mounting flange includes a built-in spacer with an integrated gasket that will bring the speaker out near the grille in the interior door trim panel. Overall, aside from a small voice coil and lack of cooling technologies, the design offers nothing of significance to complain about.

OEM Speaker Quality
Many OEM speakers include mounting provisions that place the cone close to the interior trim panel’s grille.

Measuring Thiele/Small Parameters

Every speaker of every size can have its low-frequency characteristics modeled by a set of measurements and values summarized as Thiele/Small parameters. These measurements can be used with enclosure simulation software to predict how the driver will behave in an enclosure.

The Thiele/Small parameters quantify the driver’s suspension compliance, resonant frequency, mechanical Q, electrical Q and motor force. The information does not describe any nonlinearities in the suspension or magnetic fields or the excursion limits of the design. Far too many amateur audio enthusiasts think you can quantify the low-frequency sound quality of a speaker using enclosure simulation with Thiele/Small parameters. You can’t.

I’ll use my Clio Pocket with the added mass process to measure this information for the Honda speaker.

OEM Speaker Quality

Is there anything we can discern in terms of performance from the measured Thiele/Small parameters? The first thing we see is that the driver has a relatively high total Q (Qts) of 0.69. This will add a little resonant bump in output in the lower midbass region. It’s likely a good design trade-off for a speaker designed to be used without a subwoofer, as it will add a touch of warmth to the sound. However, in absolute terms, this will be a bit of unwanted distortion. Lastly, the predicted efficiency is relatively high at 89.04 dB SPL when driven with 1 watt of power and measured at 1 meter. This is also normal for an OEM speaker as they trade low-frequency output for increased output at higher frequencies. The ~10-gram moving mass supports this theory.

Let’s look at what the BassBox Pro enclosure simulation software predicts this driver will do in our 3-cubic-foot test enclosures. I chose this volume as it’s typically large enough to have minimal effect on the driver’s performance and should simulate how the speaker will behave in a door or rear parcel shelf.

OEM Speaker Quality
The low-frequency response of our Honda door speaker in an infinite baffle application.

As you can see from the graph above, this is more of a midrange driver than a woofer. I guessed at the 30-watt power handling based on the diminutive size of the voice coil and lack of cooling features. In terms of predictions, the driver has a -3 dB frequency of 98 hertz and would greatly benefit from being used with a subwoofer.

Measuring Driver Impedance

Part of measuring Thiele/Small parameters is to make a series of impedance sweeps. Impedance is the opposition to the flow of alternating current (AC) signals. As you can see from the graph below, the driver has a fairly tall, narrow peak around its resonant frequency of 74.7 hertz. You can also see the increase in inductance at higher frequencies as the upward trend to the right.

OEM Speaker Quality
Impedance sweep of the Honda Civic’s 6.5-inch door speaker.

We can see something else in this graph. Something has caused a noticeable resonant peak at about 700 to 800 Hz, and there are additional wiggles in the response at 2.4, 3.7 and 5.2 kHz. These are likely caused by the cone, dust cap or surround resonating. We’ll see if any of these translate into quantifiable distortion in the acoustic measurements.

Speaker Acoustic Measurements

With the driver loaded into my 3-cubic-foot test enclosure, I placed it on the floor of my lab. The microphone from the Clio Pocket is 1 yard above the top edge of the cone, where it meets the surround. We’ll use this position for all speakers going forward. We’ll begin the testing by taking frequency response measurements at increasing drive levels. While there is no specific standard, we’ll clone what Vance Dickason uses in his transducer tests in Voice Coil magazine with 0.3, 1, 3, 6, 10 and 15 volts. It’s doubtful that the driver will remain linear in output at the 10- and 15-volt levels as those values equate to 25 and 56 watts of power into a 4-ohm load. I will add a 2-volt measurement that equates to 1 watt into a 4-ohm load.

Before we get into the analysis of the speaker, we need to understand a few things about the measurements. First, the information below 30 Hz can be ignored. There is no output of 100 dB SPL at 10 Hz. Second, the dip at 130 Hz is a reflection in the room. It can be ignored as well. We know this is an acoustic cancellation because there is no dip or peak in the impedance or distortion curves. Sorry, I don’t happen to have an anechoic chamber at my disposal. In the meantime, I’ll continue to purchase lottery tickets!

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 0.3-volt RMS sweep.

Well, here’s our first look at the Honda speaker. From 160 Hz through to 1.5 kHz, the response is adequately flat given the non-anechoic characteristics of my lab. From 1.5 through to 5.5 kHz, there is a bump in the output of about 6 dB.

The black trace lower in the graph is the total harmonic distortion (THD) measured by the Clio. Let’s look at a few frequencies and make some percentage distortion calculations. From 200 through to 400 Hz, the harmonic distortion is -49 dB, equating to 0.35% THD. At 80 Hz, distortion is at 1.5%, and the significant bump in distortion around 1.3 kHz represents approximately 0.89% distortion.

Let’s sweep it again with a little more voltage – this time, the signal generator is set to 1 volt RMS.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 1-volt RMS sweep.

The first thing to observe at this higher drive level is that the output increases linearly. All frequencies are roughly 10 dB louder. This is good because neither the suspension compliance nor the motor force has become a limiting factor. Something is happening up at 4.5 kHz that’s caused a bump in the distortion curve. Overall, though, it’s not too bad for this roughly 0.25-watt playback level.

Let’s bump things up to 3 volts.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 3-volt RMS sweep.

In terms of frequency response, things remain nice and linear. All frequencies are once again about 10 dB louder. What isn’t so good is the harmonic distortion characteristics. A bump appears between 700 and 900 Hz at almost 2% distortion. This would be audible if not buried with other audio information. Distortion in the bass frequencies, 70 Hz, is over 3%. This 3-volt drive level equates to roughly 2.25 watts of power for a nominal 4-ohm speaker.

OK, how about 6 volts from the function generator for the next sweep?

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 6-volt RMS sweep.

A drive level of 6 volts is roughly 9 watts of power into a 4-ohm load. The graph above shows that distortion at all frequencies has increased by more than the increase in fundamental output. For example, when driven with 3 volts at 900 Hz, the THD was around 2%. Now, with 6 volts, the distortion has increased to 3%. Remember that bump we saw in the impedance graph around 800 Hz? Well, now it’s back as a peak in the distortion graph. You’d be surprised what you can learn from impedance graphs.

Last but not least, let’s feed this driver with a 10-volt sweep that equates to about 25 watts of power.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 10-volt RMS sweep.

Though we only picked up about 3 dB more output, the distortion has increased significantly. We have 7% distortion at 800 Hz and over 3.5% at 200 Hz. If we look down in the bass region, 80 Hz is at about 10% total harmonic distortion. In short, this speaker would sound pretty bad when driven with much more than 10 to 15 watts of power and would be screaming at 25 watts.

Better Speakers Offer Better Performance

In terms of establishing a foundation for our measurements and speaker comparisons, we’ll stop here. This article will serve as a benchmark for what looked like a reasonable quality OEM speaker. We’ll test some speakers that might be better and some that might be worse over the next few months. This information should allow us to develop a correlation between design features and performance. In the meantime, if you’re shopping for new car audio speakers, drop by your local specialty mobile enhancement retailer to audition some options for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Carjacking Is on the Rise. It’s Time to Protect Yourself!

Carjacking

If you’ve been watching the news during the first half of 2022, you know that the number of carjackings taking place in major cities is increasing at an alarming rate. Why are criminals resorting to face-to-face confrontations? What should you do if someone approaches your vehicle? How can you protect yourself? The answers are all surprisingly simple.

Why Is Carjacking Suddenly Popular?

If a thief wants to ship a luxury or rare vehicle to another country, they must include a set of keys. If a relay attack is used to start the car, truck or SUV, the bad guys still need to buy new keys or fobs and have them programmed to the vehicle. The process could cost them upwards of a thousand dollars, and frankly, is a hassle. If they don’t have an original remote fob or key, the process is even more difficult and expensive. What if there were an easy way for them to get the vehicle and a key? The answer is carjacking.

What Is Carjacking?

Here’s a typical carjacking scenario. You leave for work in the morning in your Ford F-150. You pull up to a stop sign behind another vehicle. Suddenly, someone approaches your vehicle with a gun drawn. They order you out of the truck and drive away. Chances are, the car stopped in front of you at the sign (for longer than it should have been) is an accomplice to the crime and was there to distract you.

While it’s logical to think that expensive vehicles are carjackers’ primary target, any vehicle that can quickly be converted to money is at risk. So, whether it’s a Range Rover or BMW, a Toyota Corolla or Honda Civic, the risk is surprisingly similar. A whole car might be shipped overseas, or for other popular cars or trucks, the drivetrain, wheels and tires, airbags and seats might be sold piece by piece.

Carjacking
Many vehicles are stolen or carjacked because of their popularity, not just their value.

How Can You Prevent a Carjacking?

If you or your vehicle has been targeted, it might be difficult to prevent this unfortunate incident from taking place. If you have a dashcam installed or made it clear you have an aftermarket alarm (by unlocking the vehicle with an audible siren chirp), the thieves might move on to a different car or truck.

If you park somewhere with a lot of people around, you’re much less likely to run into trouble. This isn’t always easy, especially if you live in a quiet subdivision.

If you are well aware of your surroundings and notice someone approaching your vehicle, you can honk the horn or trigger the panic mode using your key fob. Thieves don’t ever want unnecessary attention. With that said, we suggest avoiding all aggressive behavior.

If someone approaches you with the intent to steal your vehicle, do exactly what you are told. Exit the vehicle with your phone, wallet or purse and let them take it. It’s just a vehicle. It can be replaced. Don’t challenge them. In fact, don’t say anything other than Yes or OK. Just step aside and let them go. Their adrenaline will be pumping, so even snide remarks could upset them and make things worse.

Carjacking
You are much more vulnerable if you’re stopped on a quiet side street than in a busy parking lot with other people around you.

Use Technology To Get Your Vehicle Back

In our opinion, equipping your vehicle with a telematics system that includes GPS tracking features is the best way to ensure that you’ll have your vehicle back in your driveway quickly. If you have a system such as DroneMobile installed and carjackers approach with guns drawn or they show one tucked into their waistband, step aside and let them go. Once they’re gone, call 911 right away and launch the DroneMobile app on your phone. You can give the police officers the exact location of your vehicle almost instantly. Let them decide how to handle the situation. Chances are, they’ll block the road and stop the thieves, or wait until the vehicle stops then take them into custody. Either way, getting your car or truck back should be a simple process. It might not be the same day, but it will get back to you quickly.

Carjacking
DroneMobile can pinpoint your vehicle’s location in seconds. You can provide this information to the police to help catch carjackers.

Share Accurate Information with Police

A little tip on providing location information to authorities: More and more emergency services like law enforcement, fire departments and ambulances are using an app called What3words. The app converts specific longitude and latitude data (which can be your current location) into a set of three simple English words. A 911 operator can use those words to give police officers a location with 10 feet of precision. This location information is more accurate than a street address, which can often be off by one or two houses or buildings. No matter what the scenario is, if you’re calling for help, providing your location using What3words can prevent confusion and help you get the assistance you need more quickly.

Upgrade Your Vehicle with DroneMobile Telematics

Whether you are worried about carjackings or simply want the benefit of a remote car starter and keyless entry system with smartphone control, drop by a local authorized DroneMobile retailer today. Should the unthinkable happen and you are carjacked, you’ll have all the tools you need to help the police apprehend the thieves and get your vehicle back.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Driver Safety, RESOURCE LIBRARY

What Do Car Audio Subwoofer Frequency Response Specs Tell Us?

Subwoofer Frequency Response

Subwoofers. Yay for subwoofers! No upgrade to a car audio system will deliver a more noticeable improvement in performance and realism. Adding a properly designed subwoofer system to your car stereo is often one of the first upgrades we recommend. The challenge is finding a solution that will look and sound great while you make sense of myriad specifications that might not be helpful.

Subwoofers and High-Frequency Performance

The motivation for this article was a story a friend shared about a client who had downgraded their selection of subwoofers based on the published frequency response of two solutions. Subwoofer A claimed to offer output up to 600 hertz. Subwoofer B, which is the model the client switched to, claimed output to 2 kHz. The client theorized that he could use the sub to fill in midrange frequencies if needed, and as such it was, therefore, a better solution.

On paper, the logic isn’t wrong. But, in practice, that’s not how subwoofers work.

Why Subwoofers Have Low Crossover Frequencies

We typically run subwoofers with a low-pass filter set between 60 and 80 hertz in car audio systems. If the car has smaller door or dash speakers, the crossover might need to be set as high as 100 hertz. With the typical crossover slope of -24 dB/octave, the sub’s output would be attenuated by more than 50 dB by 400 hertz. The ability to play to 1 kHz isn’t essential.

Why do we cross subs over so low? Well, we don’t want to hear vocals coming out of them. Most subwoofers aren’t designed to handle midrange frequency reproduction well. Most of us want the vocals to come from the front speakers in our cars or trucks. Since male voices extend to around 100 hertz, it makes sense for this information to be played by the door- or dash-mounted woofers in the system, not the subwoofer.

Why can’t subwoofers play higher frequencies? There are two reasons. The first limiting factor is cone mass. A typical 10-inch subwoofer cone assembly weighs between 125 and 175 grams. That’s a lot of mass to move back and forth 1,000 times a second. In fact, it just doesn’t work. The cone can’t switch directions fast enough to track the input signal at that frequency, so the output is attenuated significantly.

The second issue is inductance. The voice coil assembly on a subwoofer also acts as an inductor. As frequency rises, so does impedance. The result is less high-frequency output. You can learn more about inductors in this article (Link to BCA inductor article once published).

“Needs More Midbass”

While midrange performance isn’t important for a subwoofer, midbass performance is crucial. Many subs on the market have cones heavy enough to limit their output at frequencies just above 100 hertz. This mechanical high-frequency filtering can make it very hard to get the phase response between the sub and the door speaker right. If the sub has some built-in mechanical attenuation and the technician working on your audio system adds some electrical filtering, the net acoustic result might not be ideal.

A subwoofer that can play an octave or two above the crossover frequency is important. Without that extension, the bass might sound disconnected from the rest of the system. Properly configured car audio systems deliver a smooth transition between the subwoofers and the woofers, which is crucial to reproducing music accurately.

Vague Frequency Response Specs Are Useless

We’ll state in no uncertain terms that any frequency response specifications published without tolerance values are as helpful as trying to make a painting with a brush but no canvas or paint. For example, a manufacturer could state that a speaker will play from 20 Hz to 20 kHz. Most would think that’s ideal, right? What if the output was down 40 dB at those frequencies relative to 1 kHz? Without a response tolerance, the information is useless. If you want to look at frequency response specs, a tolerance of 1 or 3 dB combined with low and high-frequency limits is required.

Subwoofer Frequency Response
An example of good frequency response information. This is the data JBL Professional provides with its 5628 dual 18-inch cinema subwoofer.

What Matters When Choosing a Subwoofer?

When choosing a subwoofer, the predicted frequency response is important. As we’ve explained repeatedly, a giant subwoofer in a small enclosure might not produce as much low-frequency output as a smaller subwoofer in the same space. Thankfully, we can use computer simulation software to predict the subwoofer’s performance. Let’s take a look at two subwoofers similar to what this client was considering.

Based purely on the Thiele/Small parameters of Subwoofer B, here’s the subwoofer’s response in a 1-cubic-foot sealed enclosure.

Subwoofer Frequency Response
Frequency response, in red, of Subwoofer B in a 1-cubic-foot sealed enclosure.

As you can see, the voice coil’s inductance attenuates the high-frequency response of the driver. By 1000 Hz, it’s down 17 decibels from its peak output at around 85 hertz. So stating that this driver plays up to 1.5 or 2 kilohertz is misleading and defies the laws of physics. What should matter is how much low-frequency information this subwoofer can produce. On the bottom end, it’s down 3 dB at 50 Hz and 10 dB at 29 hertz.

OK, let’s look at the original driver with the narrower published frequency response specifications.

Subwoofer Frequency Response
Frequency response, in yellow, of Subwoofer A in a 1-cubic-foot vented enclosure tuned to 35 hertz.

The first thing our intrepid amateur car audio system designer should notice is that this subwoofer has a much flatter response through the midbass region. Why? This driver has an aluminum shorting ring built into the motor. The shorting ring helps to reduce inductance dramatically. The shorting ring also reduces cone-position-based changes in inductance that all speakers experience. Ultimately, the shorting ring dramatically reduces distortion. Both drivers deliver very similar output in this enclosure regarding low-frequency output. Does this mean they sound the same? Absolutely not.

How Loudly Does It Play?

A key component in designing a proper subwoofer system is ensuring adequate power handling based on cone excursion. To get a better understanding of the topic, you might want to read the BestCarAudio.com article on cone excursion vs. distortion.

If we look at the cone excursion vs. frequency graph for Subwoofer B, we see that it exceeds its rated Xmax specifications at all frequencies below 30 hertz when driven with 400 watts. The suspension components (spider and surround) are typically selected based on the voice coil geometry Xmax specification, so distortion is likely to become significant if pushed hard with a 400-watt amplifier. A power level of 275 would be safe at all frequencies in this enclosure, and keeping things under 200 watts is likely a good suggestion.

Subwoofer Frequency Response
Cone excursion vs. frequency, in red, of Subwoofer B when driven with 400 watts of power.

On the other hand, Subwoofer A has a much more significant Xmax specification. It’s good at all frequencies at 400 watts and can handle 775 watts without the voice coil leaving the gap. This increased excursion capability allows Subwoofer A to produce significantly more output. It also means that Subwoofer A likely sounds clearer and more accurate when driven with 400 watts than Subwoofer B.

Subwoofer Frequency Response
Cone excursion vs. frequency, in yellow, of Subwoofer A when driven with 400 watts of power.

What Do We Need To Know About Subwoofer Frequency Response Specifications?

When buying subwoofers, frequency response specifications like 20-200 Hz or 25 Hz to 1.5 kHz are useless unless there is an amplitude tolerance specification. An applicable specification would be 25 to 300 kHz (±1.5dB). As mentioned in other articles (https://www.bestcaraudio.com/when-it-comes-to-subwoofer-specifications-some-numbers-dont-matter/), efficiency specifications like 85dB@1W/1M are also irrelevant, as they don’t take into account how the enclosure affects low-frequency performance.

Suppose you want to know how a particular subwoofer will perform in your vehicle. In that case, the specialty mobile enhancement retailer you’re working with should model the driver in the enclosure they will be using with BassBox Pro, Term-Pro, LEAP, WinISD or something similar. You can then look at the driver options to see how the predicted response and effective efficiency will change. Sadly, in the case of Subwoofer A vs. Subwoofer B, the client chose incorrectly. He missed out on a great subwoofer because he was misled by irrelevant information.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Speaker Distortion Increases with Cone Excursion

Speaker Distortion

Few people in the car audio industry seem to grasp that speakers are typically the weakest link in audio systems, in terms of adding distortion to what we hear. Whether it’s a poor design with improper voice coil centering in the magnetic gap or poor magnetic or compliance linearity, speakers add significant amounts of unwanted information to what we hear. This article will take a deep dive into explaining how increased cone excursion affects distortion.

Understanding Car Audio Speaker Cone Excursion

Speaker cones move back and forth to excite air molecules and produce sound. They function in the same way that hitting the skin of a drum, blowing through a horn or vibrating the string of a guitar creates pressure waves in the air. If we apply more voltage to a speaker, the cone moves more. Reproducing low-frequency information requires that air molecules be displaced further, requiring more cone excursion (and more voltage) to produce bass frequencies. Larger instruments like an upright bass, concert grand piano and timpani also produce more low-frequency information than a banjo, spinet piano or bongo drum.

Unfortunately for speakers, the more their cones move forward and rearward, the more chances there are for the cone to not track the electrical signal perfectly. When this happens, unwanted harmonic information is added to the audio signal. We call this distortion. If the cone, dust cap or surround resonates, this also adds unwanted distortion. It’s not uncommon for speakers playing at moderate output levels to reach well over 1% distortion. This means that more than 1% of the sound they produce doesn’t follow the input signal accurately.

Measuring and Understanding Speaker Distortion

To help explain this concept, I took a popular 6.5-inch PA-style speaker that’s used in car audio systems and mounted it in my test enclosure. I set up my Clio Pocket with the microphone a few millimeters from the cone and performed a series of frequency response sweeps at different power levels. The Clio system can analyze the measurement and display second- and third-order harmonic information. Let’s look at the first measurement in detail.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 0.25 watt of power.

The graph you see above shows three pieces of information. First, the red trace is the frequency response of the speaker. This trace tells us how much energy the speaker produces at different frequencies when fed with a chirp signal. The chirp signal is a sine wave sweep that starts at 20 Hz and ends at 40 kHz. I adjusted the output of the amplifier for this test such that it produced right at 1 volt of output, which is 0.25 watt into a 4-ohm load.

The perfect speaker (which doesn’t exist) would produce a perfectly flat frequency response from the lowest bass frequencies to the highest of high frequencies. This speaker was within about 5 dB of flat from 200 Hz to 3000 Hz. Remember, this measurement is with the microphone right at the cone, so the sound pressure level numbers on the left don’t directly correlate to what you’d hear in a car or truck unless you installed the speaker in your headrest. Uh, please don’t do that.

The blue trace is the second-order harmonic distortion trace. To explain what this information means, let’s look at a specific frequency, 200 Hz. The speaker is producing about 88 dB SPL of output at 200 Hz. This is called the fundamental frequency. The blue trace tells us that it’s also producing a second harmonic (which would be 400 Hz) at a level of 38 dB SPL. Again, the absolute numbers don’t matter, but we need to know that the distortion is 50 dB below the fundamental. That works out to 0.316% for the second-order harmonic.

The green trace is the level of the third-order harmonic, which for a 200 Hz signal is 600 Hz. We have an output of about 29 dB SPL, 59 dB below the fundamental and representing a distortion level of 0.112%.

I’ll reiterate and rephrase this to be precise: If you feed this speaker a 200 hertz signal at a level of 0.25 watt, it will also produce output at 400 hertz and 600 hertz (and many more multiples). This is how speaker distortion works, and it’s common to every speaker of every design, at every price point and from every manufacturer. Finally, better speakers add less distortion – that’s a key part of what makes them better. I deliberately chose this PA-style speaker because it has an extremely short voice coil, so it will be easy to push it into high levels of distortion at low frequencies with minimal power. The purpose is to quantify how distortion increases with cone excursion, not to “test” this speaker.

More Power Means More Distortion

For the next test, I increased the output of the amplifier to 2.83 volts, which works out to 2 watts of power. This added power should correlate to a 9 dB increase in output.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 2 watts of power.

The first thing to notice is that the shape of the frequency response trace (red) didn’t change. Second, the speaker did increase its output by exactly 9 dB. You have to love the laws of physics! What matters in this measurement is that the harmonic distortion has increased significantly. The increase isn’t linear with the increase in output from the speaker. Looking at 200 Hz again, the first harmonic is now at a level of -44 dB relative to the fundamental, which is 0.631% THD. The third harmonic is at 50 dB below the fundamental, which is 0.316% THD.

Let’s double the power again to 4 watts and see what happens.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 4 watts of power.

The fundamental has increased another 3 dB as expected. The first-order harmonic content at 200 Hz is at -42 dB relative to the fundamental, which is 0.794% THD. The third-order is 47 dB below the fundamental, which is 0.446%.

Let’s double the power again to 8 watts and repeat the measurements.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 8 watts of power.

The fundamental is right at 103 dB SPL at 200 Hz, and the second harmonic is 40 dB lower at 63 dB SPL. This represents almost exactly 1% total harmonic distortion. The third harmonic is down 44 dB, which is 0.631% THD. We won’t get into the math here, but the total distortion caused by all harmonics wasn’t measured in this test, and you can’t add the numbers directly (e.g. 1.631%).

OK, let’s bump up the power again to 16 watts.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 16 watts of power.

While we continue to focus on the 200 Hz calculations, look what’s happening to the third-order harmonic distortion down below 100 Hz – it’s getting louder very quickly and is actually catching up to the fundamental information. Nevertheless, at 200 Hz, the second-order harmonic output is at 37 dB below the fundamental, which is 1.412% distortion. The third-order distortion is at -40 dB relative to the fundamental, which is 1.0 % THD.

Hopefully, you’re starting to see a pattern. Let’s double the power again to 32 watts and see how the speaker behaves.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 32 watts of power.

We picked up another 3 dB of output across the board. Our fundamental is at 108 dB at 200 Hz and the first harmonic is down only 34 dB, which is right at 1.995% THD. The third-order harmonic output is down 38 dB at 1.259% THD. If you’re getting the feeling the speaker would sound terrible attempting to reproduce audio information at 200 Hz at a drive level of 32 watts, you are right.

OK, one last time. Let’s double the power again to 64 watts and analyze the frequency response and harmonic content.

Speaker Distortion
Nearfield frequency response of a PA-style speaker driven with 64 watts of power.

With the fundamental output at 111 dB at 200 Hz, we have 79 dB of output at the second harmonic of 400 Hz, which represents 2.511% THD. The third harmonic output at 600 Hz is at 76 dB, which is 35 dB below the fundamental, or 1.778% THD.

Speaker Distortion

The chart above summarizes the increase in distortion relative to the increase in output. It’s easy to see how the second and third harmonics continue to get louder relative to the fundamental frequency.

Look at what’s happening down at 100 Hz and below. The third-order harmonic output is as loud or louder than the fundamental. When you feed this speaker 64 watts of power at 50 Hz, it produces 93 dB SPL of output (with the mic in this position) and 97 dB of output at 600 Hz. That’s audio information that wasn’t in the music. If you want to do the math, or, more accurately, if you’d like me to do the math, that’s 158% distortion.

What Have We Learned about Speaker Distortion?

There are two takeaways from this first look at car audio speaker distortion. First, the amount of distortion produced by a speaker increases as the cone excursion increases. We should already know from other articles that cone excursion increases at lower frequencies. Putting together these pieces of information tells us that we don’t want to push the smaller speakers in our vehicles to reproduce the bottom two or three octaves of the audible music range. Adding a subwoofer system with a dedicated amplifier and a speaker designed to reproduce low frequencies allows for more bass and can dramatically improve the clarity of the midrange speakers in your audio system.

Second, in general, 6.5-inch PA-style speakers aren’t good at reproducing audio below about 300 hertz. If you understand speaker enclosure design and have modeled this type of speaker using software like BassBox Pro, Leap or Term-Pro, you’ll know that most of these drivers have a -3 dB frequency in the 150 to 200 Hz range. So, pushing this type of speaker to produce audio information below 250 hertz is asking for trouble, or at the very least, lots of distortion.

Choose Your Car Audio Speakers Wisely

If you’re shopping for new speakers for your car or truck, drop by your local specialty mobile enhancement retailer and listen to the options they have available. Suppose you’re the type who likes to correlate features with performance. In that case, drivers that use aluminum or copper shorting rings, feature flat spiders or have a copper distortion-reducing cap on the pole piece are likely to add less distortion than models without.

Look for speakers with cone materials that balance mass with rigidity and damping characteristics – getting any of these wrong is a recipe for trouble. Finally, trust your ears. The speaker should sound smooth and natural with no emphasis anywhere in the frequency range, especially in the bass region. If they sound good on a display compared to the rest, they are a good choice for your car or truck.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

  • « Previous Page
  • 1
  • …
  • 12
  • 13
  • 14
  • 15
  • 16
  • …
  • 94
  • Next Page »

Recent Articles

The back of a car audio subwoofer on one side and a man with a perplexed thinking face looking at it on the other side

Car Audio Myths: DVC Subwoofers Can Handle More Power

June 1, 2025 

We’re back to bust another car audio myth wide open. This article will discuss the myth that DVC subwoofers can handle more power than a single voice coil driver. After some … [Read More...]

DroneMobile XC Connected Dashcam Security System

Product Spotlight: DroneMobile XC Connected Dashcam Security System

May 26, 2025 

Thieves frequently target vehicles from Hyundai, Kia, Toyota, Lexus, RAM, Chevrolet, and Honda. These vehicles are often stolen for their parts or exported overseas. … [Read More...]

Various car audio amplifiers, speakers, and equipment

Car Audio Myth: You Can’t Hear Low-Frequency Distortion

May 25, 2025 

At least once a week, someone comments on social media or in a forum that you can’t hear low-frequency distortion from subwoofers or amplifiers. We have no idea where this myth … [Read More...]

Compustar 2WG17 Remote Kit

Product Spotlight: Compustar 2WG17 Remote Kit

May 19, 2025 

Compustar was one of the first brands to allow consumers to choose a remote control package to accompany their remote start controller. Previously, we looked at flagship-level … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Audio Innovations

Audio Innovations

1105 Jim's Lane
Conway, AR 72032
Phone: 501-358-6545

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Driver Safety Systems
  • Marine Audio
  • Motorcycle Audio
  • Radar and Laser Detector Systems
  • Remote Starters

Store Hours

SundayClosed
Monday9:00 AM - 6:00 PM
Tuesday9:00 AM - 6:00 PM
Wednesday9:00 AM - 6:00 PM
Thursday9:00 AM - 6:00 PM
Friday9:00 AM - 6:00 PM
SaturdayClosed

Copyright © 2025 Audio Innovations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...