Audio Innovations

Car Stereos, Auto Customizing, Mobile Electronics

1105 Jim's Lane, Conway, AR 72032 501-358-6545
  • Home
  • Services
    • Car Audio
    • Driver Safety Systems
    • Marine Audio
    • Motorcycle Audio
    • Radar and Laser Detector Systems
    • Remote Starters
  • About Us
  • Location
  • Customer Reviews
  • Contact Us
  • Facebook
  • Instagram

How Does the Drone Vehicle Smartphone Control System Work?

How Drone Works

Drone is the world-class vehicle telematics system from Firstech – the manufacturer of Compustar security and remote start systems. Drone will let you remote start your vehicle, control the door locks and trunk release, pinpoint the GPS location, monitor driving behavior and much more using the DroneMobile app on your smartphone or their website. How all these features work may seem like magic, but it’s actually quite logical. Let’s look at how the Drone system works.

A Look at the Drone Telematics System

In terms of hardware, Drone is a small computer module that a professional technician can integrate into your vehicle to provide remote control functionality. The module includes a cellular data radio to communicate with your smartphone. The vehicle hardware works with the DroneMobile app on an iOS or Android smartphone or the accounts.dronemobile.com web interface to send commands to and display information from your vehicle.

How Drone Works
The compact Drone module is mounted inside the dash of your vehicle and serves as a high-speed interface between your smartphone and your car or truck.

What Can Drone Do?

Remote control functions like remote start, door lock control, trunk release and auxiliary output activation are just one aspect of the Drone solution. Each Drone module includes a GPS receiver that receives information from several of the 32 GPS satellites that orbit the earth at any given time. Tapping on the map button in the DroneMobile app sends a command to the vehicle module to report its location. The longitude and latitude are relayed back to your phone and overlaid onto Apple Maps (in iOS devices) or Google Maps (on Android smartphones). Accuracy is usually within several meters, so you will always know exactly where your vehicle is located.

Any command or request from the app is sent from your phone using WiFi or a cellular data connection to the Drone servers. Drone uses Amazon Web Services to host their servers because their service is one of the fastest and most robust Cloud connectivity solutions available. The command, which includes security authentication information, is checked by the servers, then forwarded to the Drone hardware in your vehicle using a cellular data connection. The Drone module receives the command and activates the appropriate function, or returns the requested information. In most cases, the entire communication process takes only a second or two.

The beauty of Drone is that there are no range limits. If your vehicle is in range of a cell-phone tower and you have access to the Internet, you are in complete control. You could be in your house, an office building, or lying on a beach in Mexico – you are still connected.

How Drone Works
Users can log in to accounts.dronemobile.com from any browser to control and locate their vehicle or configured the Drone system.

Drone Security and Vehicle Tracking Features

If you have chosen a Compustar, Arctic Start, FTX or iDatastart security system or upgraded a remote starter with security features, alerts from the vehicle will be sent to your smartphone and displayed as notifications. Firstech’s DAS-II sensor will monitor your vehicle for impacts, tilting (if someone were to jack up the vehicle to steal a wheel or the catalytic converter), glass breakage and motion or acceleration. The X1-MAX has the features of the DAS-II built into the unit. You can also configure Drone to send notifications when the ignition is turned on or off, or when the remote starter is activated. Speed limit warnings, curfew alerts and geofence notifications are also available.

How Drone Works
With push notifications, you’ll know in seconds if someone is tampering with your vehicle.

Easy and Fast Remote Control from Almost Anywhere

If you are shopping for the easiest-to-use, fastest remote-control system for your vehicle remote starter or security system, look no further. We can demonstrate the features of this amazing product and let you know what it will take to upgrade your car or truck. For more information about Drone, visit their website. You should also follow them on Facebook, Instagram and Twitter. Their YouTube channel contains hundreds of videos that offer in-depth explanations of specific Drone features and technologies.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, PRODUCTS, Remote Car Starters Tagged With: DroneMobile

How Does a Car Audio Amplifier Work – The Power Supply

Car Audio Amplifier

We’ve talked about car audio amplifier features and specifications at great length, but up to this point, we haven’t discussed how a car audio amplifier works. In this article, we’ll provide a simple overview of how the power supply in your mobile amplifier can take the 12 volts supplied by your electrical system and convert it into a much higher voltage to drive your speakers.

Making Power for Your Speakers

To supply enough power to your speakers to produce music at realistic listening levels, we need a lot of voltage. For standard 4-ohm speakers, it takes a peak-to-peak voltage of almost 60 volts to deliver about 100 watts to your speaker. In most amplifiers, this voltage is configured as +30V and -30V, relative to the ground reference voltage of your vehicle chassis. So, how in the world do we get plus and minus 30 volts from 12? That’s the job of the power supply.

Car Audio Amplifier
The positive and negative rail voltages of a modern car audio amplifier. In this case, we have +28.4V and -27.7V.

How a Transformer Works

Power supplies couldn’t be created with any reasonable amount of efficiency without a transformer. A transformer is a simple device that increases or decreases alternating current (AC) voltages using two coils of wire wrapped around a magnetically conductive iron core. If you have a 1:2 transformer and feed 12V of AC signal into the primary, you get 24 volts on the output. The big green boxes out on your curb or the cylinders on the power poles near your house are step-down transformers that convert the 16kV feed that enters your neighborhood into 120- and 240-volt feeds to your home.

Car Audio Amplifier
The toroidal power supply transformer in a good-quality car audio amplifier.

How Do We Get AC Voltage in a Car?

As you may (or should) know, the power supplied by the battery and alternators in our cars and trucks is direct current (DC). Left in that state and fed into a transformer, we’d see a small voltage spike when the signal was first connected, then nothing. The steady current flowing through the primary winding would simply heat it up and not produce anything on the output side of the transformer.

Car Audio Amplifier
The pulse-width modulated output signal from the power supply switching devices.

Since we need an AC signal, modern amplifiers use a pulse-width modulator to create a series of square waves that turn on a bank of MOSFETs (electrically controlled high-current switches) that pulse the supply voltage on and off very quickly. Many high-quality amplifiers have power supplies that switch at more than 300kHz.

Car Audio Amplifier
The power supply MOSFETs switch the 12V feed from our batteries and alternators on and off at high speeds to create an AC signal that feeds the transformer.

In the simplest of terms, by switching the connection from the battery to the input of the transformer on and off very quickly, we create an alternating current signal. The voltage of the pulsed signal is increased through the transformer and then fed into a set of diodes and capacitors to smooth it back out to what we call the rail voltage. The rails are the positive and negative power supply sections of the amp that are connected to the output devices.

In application, the circuit is far more complex, but this is the basic operation of the system.

Energy Storage and Power Delivery

As the output voltage of a car audio amp increases, so to does the amount of current flowing to the speaker. The pulse-width modulation controller that manages the power supply can change the relative “on” to “off” time in order to increase the current supplied by the amp. More “on” time means that more current is fed to the transformer, which results in more voltage being produced on the output. Regulated back down to the required rail voltage, this extra voltage ensures that we maintain stable rail voltages.

If you look inside an amp, you will almost always see a toroidal transformer and a bank of energy storage capacitors. These large capacitors help smooth the output of the transformer and diode rectifier stage, and store large amounts of energy so that the amp can keep up with the current demands of the audio signal.

Car Audio Amplifier
4,000 microfarads of energy storage on the output rails of our amplifier.

Learn How a Car Audio Amplifier Works

You should now have a basic understanding of how your car audio amp converts the 12V feed from your alternator into much higher voltages for the rails. In the next article, we’ll talk about the front end or input stage of a car audio amplifier and discuss crossovers, gain controls and the features and functions that make it easier for your installer to configure your car audio amplifier for optimum performance in your car or truck.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Understanding Specifications: Car Audio Amplifier Distortion

Amplifier Distortion

As we slowly approach the end of our latest Understanding Specifications series, we want to take a look at car audio amplifier distortion ratings and explain what they mean. We should make it clear: No matter how or good or bad a piece of audio equipment is, every audio component adds some amount of distortion to the signal. The amount and type of distortion those audio products add matters a great deal. Let’s explain distortion, so you know what we’re talking about.

What is Harmonic Distortion?

Before we talk about distortion, let’s talk about harmonics. By definition, a harmonic is an overtone or multiple of a frequency or sound. For example. If you were to play a 1 kHz test tone through an amplifier and a speaker, harmonics of 1 kHz would be 2 kHz, 3 kHz, 4 kHz and so on until the information becomes inaudible because the amplitude is reduced or you have reached the limit of the recording medium.

Amplifier Distortion
The frequency content of a 100 Hz square wave showing odd-ordered harmonics at 300 Hz, 500 Hz, 700 Hz, 900 Hz and so on.

Visual Representation of Harmonic Distortion

Amplifier Distortion
Here is an image of the output of an inexpensive amplifier playing a 1 kHz test tone at an output level of 1-watt into a 4-ohm load. As you can see, additional audio information has been added to the output signal at almost every conceivable harmonic, right out to 20 kHz. The level of the distortion is significant at -48.3 dB or 0.384 percent.

 

Amplifier Distortion
Here is a high-quality amplifier playing the same 1 kHz test tone at the same 2.0 Vrms level. There is significantly less harmonic distortion added to the output signal. The peak is at a level of -85.4 dB or 0.00513 percent.

Intermodulation Distortion Explained

Another common distortion is intermodulation distortion (IMD). From a mathematical standpoint, where harmonic distortion results in multiples of a specific frequency, intermodulation distortion manifests itself as audible signals that are the difference between two frequencies.

The most common lab test for intermodulation distortion involves playing two test tones at the same time and looking at the resulting output. In most cases, 19 kHz and 20 kHz tones are used and the resulting distortion typically manifests itself as unwanted output at 1 kHz. This 1 kHz content is the difference between 19 kHz and 20 kHz (20-19=1). You will also see harmonic distortion present in the output signal on either side of the 19 and 20 kHz tones.

Amplifier Distortion
Here are the IMD measurements of our inexpensive amplifier. As you can see, the output level is set to 1 watt or around +6 dBv. The difference product at 1 kHz is at a level of -45.06 dB (0.558 percent distortion) and the higher ordered harmonic distortion products are at or below -54.7 dB (0.183 percent distortion).

 

Amplifier Distortion
Our good amplifier is set up for the same test as above and as you can see, the results are significantly different. The product at 1 kHz is at an astonishing -110.78 (0.000289 percent distortion) and the highest sideband is at an impressive -80.22 dB (0.00975 percent distortion). This is several orders of magnitude better performance.

How Do We Perceive Car Audio Amplifier Distortion?

Amplifier DistortionIn the case of harmonic distortion, this typically manifests itself as adding an amount of “brightness” or “harshness” to the amplifier since it creates high-frequency content where none originally existed. Harmonic distortion reduces the clarity and realism of the music you are enjoying.

Intermodulation distortion, on the other hand, is responsible for adding unwanted low-frequency content to your music. In most cases, when someone describes an amplifier (or source unit or processor) as sounding “warm,” that is a result of the presence of audible intermodulation distortion.

Choosing the Right Amp for Your Car Stereo System

Of course, you will want to choose an amplifier that offers the lowest possible distortion numbers for your given budget. In the case of the three amplifiers we used in our good, better and best comparisons, you are looking at a dramatic difference in cost, with the cheap amp coming in under $100, the middle amp costing around $600 and the great amp having an MSRP around $1,500. With that said, the fact that an amplifier is expensive doesn’t automatically make it good. Your local mobile electronics specialist retailer can help you choose the right amp for your system and budget to ensure that your music will sound great!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Why Car Audio System Setup and Tuning Are Important

Car Audio System TuningUnlike buying and setting up a basic home audio system, having a new amplifier and speakers installed in your car or truck requires proper setup and tuning. At home, you can adjust the placement of the speakers and how much they are toed in to affect the focus of the soundstage and the bass response. In a car, your installer needs to mount the amplifier, wire it, then adjust the crossover and sensitivity controls to work with your source unit and the design of the system. Getting these settings wrong can have an audibly detrimental effect on the performance of your mobile audio system. Let’s look at why proper amplifier setup and tuning are so important.

Basic Car Audio Amplifier Setup

Car Audio System TuningOnce the power, ground and remote turn-on connections are made, and new speaker wires have been run to each location in the car, the last step is to connect your amplifier to the source unit in the system. Depending on the design of your audio system, you may have a very basic CD player with low-voltage preamp outputs, a premium multimedia receiver with 5-volt preamp outputs or you might be using a factory radio with or without an amplifier. The sensitivity (gain) control on your amplifier exists to ensure that your new amp can reach its full potential from any of these sources. Many shops use an oscilloscope or a distortion detecting device to ensure that the system is configured accurately and efficiently.

Car Audio System TuningIf you are adding a subwoofer to your vehicle, the basic process is the same, but your installer now has to balance the output of the sub to the other speakers in the car. He or she will also have to set the crossovers on the amp so that the output of the sub blends with the output of the smaller speakers. Many high-end shops use a real-time analyzer (RTA) to perform this task to ensure the output of the speakers blends perfectly. Setting up crossovers also needs to take into account the physical capabilities of a speaker. A small 4-inch midrange certainly can’t produce the same amount of low-frequency information as a 6.5-inch woofer and needs to be adjusted accordingly.

What if Things Aren’t Set Up Properly?

Car Audio System TuningIf the sensitivity setting is wrong, you may experience a lot of background noise or hiss in your system. At the opposite end of the scale, you may not be able to reach full volume. If the crossovers aren’t right, you run the risk of damage to small speakers or experience unwanted dips and peaks in the frequency response of the system around the crossover point.

Setting Up a Digital Signal Processor

The goal of adding a digital signal processor (DSP) to a mobile audio system is to produce accurate imaging and realistic frequency response at the listening position. Setting up a DSP properly requires training and an investment in tools. Beyond that, your installer needs to use a real-time analyzer to measure the acoustic performance of the system. While there are a variety of processes used to set parameters like signal delay and different theories on whether to boost or cut EQ bands, the person tuning the system needs to have a full and detailed understanding of how the adjustments he or she makes affect the amplifiers, the speakers and the resulting acoustic performance of the system.

What if Your DSP Isn’t Set Up Properly?

In the simplest of scenarios, your audio system may not be as optimized as it could be. There may still be frequency response, imaging or staging issues. If the settings are really far off, you run the risk of damaging speakers permanently, or the performance of your sound system might have been better off with no processing at all.

Choosing the Right Retailer to Setup Your Mobile Audio System

Car Audio System TuningThe easiest way to choose a shop to set up your mobile audio system is to ask to listen to one of their demo vehicles. If you like the sound of the system, it offers excellent imaging and staging and plays at a volume level that suits your listening preferences, they should be qualified to recreate something very similar in your vehicle. If you aren’t happy with the way the vehicle sounds, ask to listen to a client vehicle. If you still aren’t satisfied, look for another shop to work on your car or truck.

When a car audio system is set up and tuned properly, it can rival some of the best home audio and studio reference systems on the planet. Don’t short yourself on getting the most performance possible from your upgrade – make sure it’s installed and configured properly.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Understanding Specifications: Car Audio Amplifier Stereo Separation

Amplifier Stereo Separation

We’re back in the lab and working on a few more articles about amplifier specifications in order to wrap up this series. This time, we’re going to talk about the amplifier stereo separation specification. In a nutshell, the stereo separation, or crosstalk, number tells us how much of an audio signal leaks from one channel of an amplifier to the other. Of course, for the number to exist, you need to be looking at a stereo amplifier and in most cases, one that will drive a full-range signal.

Understanding Amplifier Stereo Separation

Amplifier Stereo SeparationThe stereo separation specification is supplied in decibels and describes the amplitude of the signal produced in the adjacent channel. For example, if we have a stereo amp, and we feed a sine wave into the left channel, some of that signal will be reproduced by the right channel. The stereo separation specification tells us how much quieter the signal will be. A good number would be something about 70 dB.

A criterion required to better explain the application of this stereo separation value is to specify at what frequency the signal is tested. In most cases, you’ll see 1 kHz as the specified test frequency. The reason that the frequency needs to be specified is that some amplifiers, in fact, most amplifiers, have more crosstalk (signal leakage from one channel to the other) at higher frequencies.

Why Is Stereo Separation Important?

Amplifier Stereo SeparationWhen trying to recreate a musical experience, one of the many criteria that people will quantify subjectively is stage width. If you are using an amplifier with a poor stereo separation spec, content from the left channel will be reproduced on the right output and vice versa. This has the effect of making the signal more monaural and effectively reducing the width of the soundstage. If you switch to an amplifier with amazing separation performance, the stage may seem to be wider.

Measuring Stereo Separation

To give you an idea of how a good amplifier compares with an inexpensive solution, we set up our QuantAsylum QA401 on the bench and took some measurements.

Amplifier Stereo Separation
This shows the left channel output of our good amplifier when fed with a 1 kHz test tone and the sensitivity controls set to produce 1 watt (2.0 Vrms) of output.

 

Amplifier Stereo Separation
This image shows the output of the right channel output from this same amp. The level of -55.90 dB is 61.94 dB lower than the output on the left channel. This is the crosstalk or channel separation at 1 kHz.

 

Amplifier Stereo Separation
Here we have the same baseline test for our low-quality amplifier. It is set to produce 1 watt of output at 1 kHz.

 

Amplifier Stereo Separation
Here is the output on the right channel of the low-quality amp. You can see that the signal produced is 53.81 lower than that of the adjacent channel. This is 8 dB worse than the good amp shown above.

Stereo Separation and Frequency

As we mentioned, crosstalk and channel separation get worse as frequency increases. We took a series of measurements for each of the amplifiers in this test and plotted their channel separation versus frequency in the chart below.

Amplifier Stereo Separation

The graph clearly shows that the signal leakage from one channel to another is very dependent on frequency. At 20 kHz, our low-quality amplifier outperforms the good amp. Since we can’t hear 20 kHz, this isn’t an issue.

What to Look for When Shopping for a Car Audio Amplifier

Very few manufacturers publish an amplifier channel separation specification. If you do find a spec, the higher the number, the better the amp will perform in terms of creating a wide soundstage in your vehicle. Your local mobile electronics retailer can help you choose a great amplifier solution and install it for optimum performance and reliability.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

  • « Previous Page
  • 1
  • …
  • 62
  • 63
  • 64
  • 65
  • 66
  • …
  • 98
  • Next Page »

Recent Articles

Speaker Sensitivity – Specifications and Explanation

Speaker Sensitivity – Specifications and Explanation

September 14, 2025 

Every speaker, be it a tweeter, midrange driver, woofer or subwoofer, will have a sensitivity rating. Sensitivity ratings attempt to describe how much sound a speaker will produce … [Read More...]

KICKER MSC65

Product Spotlight: KICKER MSC65

September 8, 2025 

There are dozens of companies manufacturing marine-grade speakers. That certainly doesn’t mean that all the speakers sound good and have equivalent performance. KICKER, a company … [Read More...]

Wire Equivalency Using the AWG Standard: 16+16 Isn’t 8

Wire Equivalency Using the AWG Standard: 16+16 Isn’t 8

September 7, 2025 

We recently witnessed a discussion on social media in which someone said that two 16 AWG wires could do the same work as a single 8 AWG wire. Unfortunately, the American Wire Gauge … [Read More...]

The inside of a car with a band playing on a stage through the front window

The Four Stages of High-End Car Audio – Part 2: The Soundstage

August 31, 2025 

We’re back with the second of four articles discussing the listening experience of truly high-end car audio systems. In our first article, we discussed the importance of accurate … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Audio Innovations

Find Us

Audio Innovations

1105 Jim's Lane
Conway, AR 72032
501-358-6545

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Driver Safety Systems
  • Marine Audio
  • Motorcycle Audio
  • Radar and Laser Detector Systems
  • Remote Starters

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 6:00 pm

Copyright © 2025 Audio Innovations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...